DOI QR코드

DOI QR Code

CORDEX-EA Phase 2 다중 지역기후모델을 이용한 한반도 미래 극한 기후 전망

Future Projection of Extreme Climate over the Korean Peninsula Using Multi-RCM in CORDEX-EA Phase 2 Project

  • 김도현 (국립기상과학원 기후변화예측연구팀) ;
  • 김진욱 (국립기상과학원 기후변화예측연구팀) ;
  • 변영화 (국립기상과학원 기후변화예측연구팀) ;
  • 김태준 (국립기상과학원 기후변화예측연구팀) ;
  • 김진원 (국립기상과학원 기후변화예측연구팀) ;
  • 김연희 (국립기상과학원 미래기반연구부) ;
  • 안중배 (부산대학교 대기환경과학과) ;
  • 차동현 (울산과학기술원 도시환경공학과) ;
  • 민승기 (포항공과대학교 환경공학부) ;
  • 장은철 (공주대학교 대기과학과)
  • Kim, Do-Hyun (Climate Change Research Team, National Institute of Meteorological Sciences) ;
  • Kim, Jin-Uk (Climate Change Research Team, National Institute of Meteorological Sciences) ;
  • Byun, Young-Hwa (Climate Change Research Team, National Institute of Meteorological Sciences) ;
  • Kim, Tae-Jun (Climate Change Research Team, National Institute of Meteorological Sciences) ;
  • Kim, Jin-Won (Climate Change Research Team, National Institute of Meteorological Sciences) ;
  • Kim, Yeon-Hee (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Ahn, Joong-Bae (Department of Atmospheric Science, Pusan National University) ;
  • Cha, Dong-Hyun (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Min, Seung-Ki (Division of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Chang, Eun-Chul (Department of Atmospheric Science, Kongju National University)
  • 투고 : 2021.09.17
  • 심사 : 2021.12.08
  • 발행 : 2021.12.31

초록

This study presents projections of future extreme climate over the Korean Peninsula (KP), using bias-corrected data from multiple regional climate model (RCM) simulations in CORDEX-EA Phase 2 project. In order to confirm difference according to degree of greenhouse gas (GHG) emission, high GHG path of SSP5-8.5 and low GHG path of SSP1-2.6 scenario are used. Under SSP5-8.5 scenario, mean temperature and precipitation over KP are projected to increase by 6.38℃ and 20.56%, respectively, in 2081~2100 years compared to 1995~2014 years. Projected changes in extreme climate suggest that intensity indices of extreme temperatures would increase by 6.41℃ to 8.18℃ and precipitation by 24.75% to 33.74%, being bigger increase than their mean values. Both of frequency indices of the extreme climate and consecutive indices of extreme precipitation are also projected to increase. But the projected changes in extreme indices vary regionally. Under SSP1-2.6 scenario, the extreme climate indices would increase less than SSP5-8.5 scenario. In other words, temperature (precipitation) intensity indices would increase 2.63℃ to 3.12℃ (14.09% to 16.07%). And there is expected to be relationship between mean precipitation and warming, which mean precipitation would increase as warming with bigger relationship in northern KP (4.08% ℃-1) than southern KP (3.53% ℃-1) under SSP5-8.5 scenario. The projected relationship, however, is not significant for extreme precipitation. It seems because of complex characteristics of extreme precipitation from summer monsoon and typhoon over KP.

키워드

과제정보

본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사를 드립니다. 이 연구는 기상청 국립기상과학원 「AR6 기후변화시나리오 개발·평가」 (KMA2018-00321)의 지원을 통해 수행되었습니다.

참고문헌

  1. Ahn, J.-B., and Coauthors, 2016: Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pac. J. Atmos. Sci., 52, 223-236, doi:10.1007/s13143-016-0021-0.
  2. Casanueva, A., and Coauthors, 2016: Daily precipitation statistics in a EURO-CORDEX RCM ensemble: Added value of raw and bias-corrected high-resolution simulations. Climate Dyn., 47, 719-737, doi:10.1007/s00382-015-2865-x.
  3. Chen, J., F. P. Brissette, and R. Leconte, 2011: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol., 401, 190-202, doi:10.1016/j.jhydrol.2011.02.020.
  4. Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc., 131, 1759-1782, doi:10.1256/qj.04.101.
  5. Donat, M. G., L. V. Alexander, H. Yang, I. Durre, R. Vose, and J. Caesar, 2013: Global land-based datasets for monitoring climatic extremes. Bull. Amer. Meteor. Soc., 94, 997-1006, doi:10.1175/BAMS-D-12-00109.1.
  6. Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937-1958, doi:10.5194/gmd-9-1937-2016.
  7. Giorgi, F., 2019: Thirty years of regional climate modeling: where a re we and where a re we going next?. J. Geophys. Res. Atmos., 124, 5696-5723, doi:10.1029/2018JD030094.
  8. Giorgi, F., and W. J. Gutowski, 2015: Regional dynamical downscaling and the CORDEX initiative. Annu. Rev. Env. Resour., 40, 467-490, doi:10.1146/annurev-environ-102014-021217.
  9. Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 7-29, doi:10.3354/cr01018.
  10. Hong, S.-Y., and Coauthors, 2013: The Global/Regional Integrated Model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243, doi:10.1007/s13143-013-0023-0.
  11. Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2017: Worsening of heat stress due to global warming in South Korea based on Multi-RCM ensemble projections. J. Geophys. Res. Atmos., 122, 11444-11461, doi:10.1002/2017JD026731.
  12. Im, E.-S., and Coauthors, 2021: Emergence of robust anthropogenic increase of heat stress-related variables projected from CORDEX-CORE climate simulations. Climate Dyn., 57, 1629-1644, doi:10.1007/s00382-020-05398-w.
  13. IPCC, 2021: Summary for Policymakers. In V. Masson-Delmotte et al. Eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group 1 to the Sixth Assessment Repot of the Intergovernmental Panel on Climate Change. Cambridge University Press, 39 pp, In press.
  14. Jin, C.-S., D.-H. Cha, D.-K. Lee, M.-S. Suh, S.-Y. Hong, H.-S. Kang, and C.-H. Ho, 2016: Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Climate Dyn., 47, 765-778, doi: 10.1007/s00382-015-2869-6.
  15. Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345-357, doi:10.1007/s10584-013-0705-8.
  16. Kim, G., and Coauthors, 2018a: Future changes in extreme precipitation indices over Korea. Int. J. Climatol., 38, e862-e874, doi:10.1002/joc.5414.
  17. Kim, G., and Coauthors, 2020a: Projection of future precipitation change over South Korea by regional climate models and bias correction methods. Theor. Appl. Climatol., 141, 1415-1429, doi:10.1007/s00704-020-03282-5.
  18. Kim, J., and Coauthors, 2018b: Winter precipitation characteristics in western US related to atmospheric river landfalls: Observations and model evaluations. Climate Dyn., 50, 231-248. doi:10.1007/s00382-017-3601-5.
  19. Kim, J.-U., T.-J. Kim, D.-H. Kim, D.-H. Cha, S.-K. Min, and Y.-H. Kim, 2020b: Evaluation of performance and uncertainty for Multi-RCM over CORDEX-East Asia pha se 2 r egion. Atmosphere, 30, 361-376. doi:10.14191/Atmos.2020.30.4.361 (in Korean with English abstract).
  20. KMA, 2021: An analysis report for climate change over the Republic of Korea during 109 years (1912~2020 years). Korea Meteorological Administration, 68 pp [Available online at http://www.climate.go.kr/home/bbs/view.php?code=71&bname=scenario&vcode=6511&cpage=1&vNum=Notice&skind=&sword=&category1=&category2=] (in Korean).
  21. Leander, R., T. A. Buishand, B. J. J. M. van den Hurk, and M. J. M. de Wit, 2008: Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output. J. Hydrol., 351, 331-343, doi:10.1016/j.jhydrol.2007.12.020.
  22. Lee, D., S.-K. Min, E. Fischer, H. Shiogama, I. Bethke, L. Lierhammer, and J. F. Scinocca, 2018: Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics. Environ. Res. Lett., 13, 044033, doi:10.1088/1748-9326/aab55d.
  23. Lee, M., D.-H. Cha, M.-S. Suh, E.-C. Chang, J.-B. Ahn, S.-K. Min, and Y.-H. Byun, 2020: Comparison of tropical cyclone activities over the Western North Pacific in CORDEX-East Asia phase I and II experiments. J. Climate, 33, 10593-10607, doi:10.1175/JCLID-19-1014.1.
  24. Oh, S.-G., and Coauthors, 2016: Projections of high resolution climate changes for South Korea using multipleregional climate models based on four RCP scenarios. Part 2: precipitation. Asia-Pac. J. Atmos. Sci., 52, 171-189, doi:10.1007/s13143-016-0018-8.
  25. Orlowsky, B., and S. I. Seneviratne, 2012: Global changes in extreme events: Regional and seasonal dimension. Climatic Change, 110, 669-696, doi:10.1007/s10584-011-0122-9.
  26. Park, C., and S.-K. Min, 2019: Multi-RCM near-term projections of summer climate extremes over East Asia. Climate Dyn., 52, 4937-4952, doi:10.1007/s00382-018-4425-7.
  27. Park, C., and Coauthors, 2016: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Climate Dyn., 46, 2469-2486, doi:10.1007/s00382-015-2713-z.
  28. Powers, J. G., and Coauthors, 2017: The weather research and forecasting model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 1717-1737, doi:10.1175/BAMS-D-15-00308.1.
  29. Riahi, K., and Coauthors, 2017: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change, 42, 153-168, doi:10.1016/j.gloenvcha.2016.05.009.
  30. Rockel, B., A. Will, and A. Hense, 2008: The regional climate model COSMO-CLM (CCLM). Meteorol. Z., 17, 347-348, doi:10.1127/0941-2948/2008/0309.
  31. Sellar, A. A., and Coauthors, 2019: UKESM1: Description and evaluation of the U.K. earth system model. J. Adv. Model. Earth Sys., 11, 4513-4558, doi:10.1029/2019MS001739.
  32. Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 1716-1733, doi:10.1002/jgrd.50203.
  33. Suh, M.-S., and Coauthors, 2016: Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: Surface air temperature. Asia-Pac. J. Atmos. Sci., 52, 151-169, doi:10.1007/s13143-016-0017-9.
  34. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485-498, doi:10.1175/BAMSD-11-00094.1.
  35. Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456-457, 12-29, doi:10.1016/j.jhydrol.2012.05.052.
  36. WMO, 2019: The Global Climate in 2015-2019. World Meteorological Organization, 21 pp [Available online at https://library.wmo.int/index.php?lvl=notice_display&id=21522] .
  37. Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change, 2, 851-870, doi:10.1002/wcc.147.