10 nm 이하 초고해상도와 광폭 관측시야를 구현하기 위한 극초소형 마이크로컬럼용 정전형 디플렉터 연구

Study on an Electrostatic Deflector for Ultra-miniaturized Microcolumn to Realize sub-10 nm Ultra-High Resolution and Wide Field of View

  • 이형우 (선문대학교 대학원 나노과학과) ;
  • 이영복 (선문대학교 대학원 나노과학과) ;
  • 오태식 (선문대학교 공과대학 디스플레이반도체공학과)
  • Lee, Hyung Woo (Department of Physics and Nanoscience, Graduate School, Sunmoon University) ;
  • Lee, Young Bok (Department of Physics and Nanoscience, Graduate School, Sunmoon University) ;
  • Oh, Tae-Sik (Department of Display & Semiconductor Engineering, College of Engineering, Sunmoon University)
  • 투고 : 2021.10.07
  • 심사 : 2021.12.08
  • 발행 : 2021.12.31

초록

A 7 nm technology node using extreme ultraviolet lithography with a wavelength of 13.5 nm has been recently developed and applied to the semiconductor manufacturing process. Furthermore, the development of sub-3 nm technology nodes continues to be required. In this study, design factors of an electrostatic deflector for an ultra-miniaturized microcolumn system that can realize an electron wavelength of below 1.23 nm with an acceleration voltage of above 1 eV were investigated using a three-dimensional simulator. Particularly, the optimal design of the electrostatic octupole floating deflector was derived by optimizing the design elements and improving the driving method of the 1 keV low energy ultra-miniaturized microcolumn deflector. As a result, the entire wide field of view greater than 330 ㎛ at a working distance of 4 mm was realized with an ultra-high-resolution electron beam spot smaller than 10 nm. The results of this study are expected to be a basis technology for realizing a wafer-scale multi-array microcolumn system, which is expected to innovatively improve the throughput per unit time, which is the biggest drawback of electron beam lithography.

키워드

참고문헌

  1. T. H. P. Chang, D, P, Kern, and M. A. McCord, "Electron optical performance of a scanning tunneling microscope controlled field emission microlens system", J. Vac. Sci. Tehnol. B: Microelectronics Processing and Phenomena 7, pp.1855-1861, 1989. https://doi.org/10.1116/1.584680
  2. L. P. Muray, U. Staufer, D, P, Kern, and T. H. P. Chang, "Performance measurements of 1-keV electron-beam microcolumn", J. Vac. Sci. Tehnol. B, Vol.10, No.6, pp.2749-2753, 1992. https://doi.org/10.1116/1.585995
  3. E. Kratschmer, H. S. Kim, M. G. R. Thomson, K. Y. Lee, S. A. Rishton, M. L. Yu, and T. H. P. Chang, "Sub40 nm resolution 1 keV scanning tunneling microscope fieldemission microcolumn", J. Vac. Sci. Tehnol. B, Vol.12, No.6, pp.3503-3507, 1994. https://doi.org/10.1116/1.587459
  4. M. G. R. Thomson, and T. H. P. Chang, "Lens and deflector design for microcolumns", J. Vac. Sci. Tehnol. B, Vol.13, No.6, pp.2445-2449, 1995. https://doi.org/10.1116/1.588018
  5. E. Kratschmer, H. S. Kim, M. G. R. Thomson, E. Kratschmer, M. L. Yu, K. Y. Lee, S. A. Rishton, and T. H. P. Chang, "An electron-beam microcolumn with improved resolution, beam current, and stability", J. Vac. Sci. Tehnol. B, Vol.13, No.6, pp.2498-2503, 1995. https://doi.org/10.1116/1.588381
  6. E. Kratschmer, H. S. Kim, M. G. R. Thomson, K. Y. Lee, S. A. Rishton, M. L. Yu, B. W. Hussey, and T.H.P. Chang, "Experimental evaluation of a 20×20 mm footprint microcolumn", J. Vac. Sci. Technol. B, Vol.14, No.6, pp.3792-3796, 1996. https://doi.org/10.1116/1.588669
  7. T. H. P. Chang, M.G.R. Thomson, H. S. Kim, K. Y. Lee, S. A. Rishton, M. L. Yu, S. Zolgharnain, and B. W. Hussey, "Electron-beam microcolumn for lithography and realated applications", J. Vac. Sci. Technol. B, Vol.14, No.6, pp.3774-3781, 1996. https://doi.org/10.1116/1.588666
  8. T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, "Multiple electron-beam lithography", Micro-electronic Engineering, Vol 57-58, pp.117-135, 2001. https://doi.org/10.1016/S0167-9317(01)00528-7
  9. H. S Kim, Y. B. Lee, S. W. Choi, H. W. Kim, D. W. Kim, S-J. Ahn, T. S. Oh, Y-H. Song, B. C. Park, and S. J. Lim, "Development of arrayed microcolumns and field emitters", Jpn. J. Appl. Phys. Vol. 56, 06GA01, 2017. https://doi.org/10.7567/JJAP.56.06GA01
  10. C. S. Silver, J. P. Spallas, and L. P. Muray. "Variable probe current using a condenser lens in a miniature electron beam column", Proc. Of SPIE, Vol.7378, pp.787810 (1-7), 2009.
  11. T. S. Oh, D. W. S-J Ahn, Kim, and H. S Kim, "Improved design of 5 nm class electron optical microcolumn for manufacturing convenience and its characteristics", J. Vac. Sci. Technol. A, Vol.31, No.6, pp.061601 (1-6), 2013.
  12. T. S. Oh, H. S Kim, S-J Ahn, and D. W. Kim, "Design of an ultra-miniaturized electron optical microcolumn with sub-5 nm very high resolution", Ultramicroscope, Vol.136, pp.171-175, 2014. https://doi.org/10.1016/j.ultramic.2013.10.003
  13. Y. C. kim, H. S Kim, S-J Ahn, and D. W. Kim, "Study on the scan field of modified octupole and quadrupole deflector in a microcolumn", J. the Korea Academia-Industrial cooperation Society, Vol. 19, No.11, pp.1-6, 2018.
  14. H. W. kim, Y. B. Lee, D. W. Kim, S-J Ahn, T. S. Oh, H. S Kim, and Y. C. Kim, "Variations of field of view depending on the Si deflector shape in a microcolumn", J. Vac. Sci. Technol. A, Vol.36, No.6, pp.06J902 (1-6), 2018. https://doi.org/10.1116/1.5048128
  15. Katsmmi Ura, Electron Ion Beam Optics, p.271, Gongrib publishers, pp.6-7, 1994.