DOI QR코드

DOI QR Code

스파크점화 엔진에서 천연가스와 수소의 희박연소 성능 비교

Comparison of Lean Combustion Performance in a Spark-Ignition Engine Fueled with Natural Gas and Hydrogen

  • 박현욱 (한국기계연구원 그린동력연구실) ;
  • 이준순 (과학기술연합대학원대학교 환경에너지기계공학) ;
  • 오승묵 (한국기계연구원 그린동력연구실) ;
  • 김창업 (한국기계연구원 그린동력연구실) ;
  • 이용규 (한국기계연구원 그린동력연구실) ;
  • 강건용 (한국기계연구원 그린동력연구실)
  • 투고 : 2021.11.26
  • 심사 : 2021.12.15
  • 발행 : 2021.12.31

초록

Lean combustion performance of natural gas and hydrogen was compared in a spark-ignition engine. The lean combustion engine operation with natural gas was limited due to combustion instability at an excess air ratio (EAR) above 1.8. The total hydrocarbon (THC) emissions increased significantly with increasing EAR. The nitrogen oxides (NOX) emissions were also high due to the limitation of increasing EAR. The lean combustion engine operation with hydrogen showed superior combustion stability as well as low THC and NOX emissions, even at high EARs. However, boosting technology was required to reach the high EARs.

키워드

과제정보

본 연구는 2021년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제입니다(No. 20212020800050 다중 분산발전 기반의 옥상온실형 스마트 그린빌딩 융복합 시스템 개발 및 실증).

참고문헌

  1. C. Bae and J. Kim, "Alternative fuels for internal combustion engines," Proceedings of the Combustion Institute, Vol. 36, No. 3, 2017, pp. 3389~3413. https://doi.org/10.1016/j.proci.2016.09.009
  2. 박현욱, 이준순, 오승묵, 김창업, 이용규, 강건용, "천연가스 스파크점화 엔진 발전기에서의 에너지 손실 분석," 한국분무공학회지, Vol. 25, No. 4, 2020, pp. 1~8.
  3. R. Ortiz-Imedio, A. Ortiz and I. Ortiz, "Comprehensive analysis of the combustion of low carbon fuels (hydrogen, methane and coke oven gas) in a spark ignition engine through CFD modeling," Energy Conversion and Management, Vol. 251, 2022, pp. 114918. https://doi.org/10.1016/j.enconman.2021.114918
  4. H. Park, E. Shim, J. Lee, S. Oh, C. Kim, Y. Lee and K. Kang, "Large-squish piston geometry and early pilot injection for high efficiency and low methane emission in natural gas-diesel dual fuel engine at high-load operations," Fuel, Vol. 308, 2022, pp. 122015. https://doi.org/10.1016/j.fuel.2021.122015
  5. H. Park, J. Kim and C. Bae, "Effects of hydrogen ratio and EGR on combustion and emissions in a hydrogen/diesel dual-fuel PCCI engine," SAE Technical Paper (No. 2015-01-1815), 2015.
  6. D. Seboldt, M. Mansbart, P. Grabner and H. Eichlseder, "Hydrogen Engines for Future Passenger Cars and Light Commercial Vehicles," MTZ worldwide, Vol. 82, No. 2, 2021, pp. 42~47.
  7. H. Park, J. Lee, N. Jamsran, S. Oh, C. Kim, Y. Lee and K. Kang, "Comparative assessment of stoichiometric and lean combustion modes in boosted spark-ignition engine fueled with syngas," Energy Conversion and Management, Vol. 239, 2021, pp. 114224. https://doi.org/10.1016/j.enconman.2021.114224
  8. Z. Ran, D. Hariharan, B. Lawler and S. Mamalis, "Exploring the potential of ethanol, CNG, and syngas as fuels for lean spark-ignition combustion-An experimental study," Energy, Vol. 191, 2020, 116520. https://doi.org/10.1016/j.energy.2019.116520
  9. F. Ma, Y. Wang, H. Liu, Y. Li, J. Wang and S. Zhao, "Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine," International Journal of Hydrogen Energy, Vol. 32, No. 18, 2007, pp. 5067~5075. https://doi.org/10.1016/j.ijhydene.2007.07.048
  10. S. Luo, F. Ma, R. K. Mehra and Z. Huang, "Deep insights of HCNG engine research in China. Fuel," Vol. 263, 2020, pp. 116612. https://doi.org/10.1016/j.fuel.2019.116612
  11. D. Koch, T. Ebert and A. Sousa, "Engine Adaptation from Diesel to H2 HP-EGR Lean Combustion Concept," MTZ Worldwide, Vol. 81, No.5, 2020, pp. 30~37. https://doi.org/10.1007/s38313-020-0223-9
  12. V. Dhyani and K. A. Subramanian, "Experimental investigation on effects of knocking on backfire and its control in a hydrogen fueled spark ignition engine," International Journal of Hydrogen Energy, Vol. 43, No. 14, 2018, pp.7169~7178. https://doi.org/10.1016/j.ijhydene.2018.02.125
  13. V. Dhyani and K. A. Subramanian, "Control of backfire and NOx emission reduction in a hydrogen fueled multi-cylinder spark ignition engine using cooled EGR and water injection strategies," International Journal of Hydrogen Energy, Vol. 44, No. 12, 2019, pp. 6287~6298. https://doi.org/10.1016/j.ijhydene.2019.01.129
  14. J. B. Heywood, "Internal combustion engine fundamentals Second Edition," McGraw-Hill, Chapter 11. Pollutant Formation and Control, 2018.
  15. H. Park, E. Shim and C. Bae, "Injection strategy in natural gas-diesel dual-fuel premixed charge compression ignition combustion under low load conditions," Engineering, Vol. 5, No. 3, 2019, pp. 548~557. https://doi.org/10.1016/j.eng.2019.03.005
  16. 박현욱, 이준순, 나랑후 잠스랑, 오승묵, 김창업, 이용규, 강건용, "합성가스 스파크점화 과급 엔진에서 희박 연소를 통한 열효율 및 배기 개선," 한국분무공학회지, Vol. 26, No. 1, 2021, pp. 40~48. https://doi.org/10.15435/jilasskr.2021.26.1.40
  17. H. Park, E. Shim and C. Bae, "Improvement of combustion and emissions with exhaust gas recirculation in a natural gas-diesel dual-fuel premixed charge compression ignition engine at low load operations," Fuel, Vol. 235, 2019, pp. 763~774. https://doi.org/10.1016/j.fuel.2018.08.045
  18. D. Koch, E. Eber, S. Kureti and A. Sousa, "H2-deNOx catalyst for H2 combustion engines," MTZ Worldwide, Vol. 81, No. 6, 2020, pp. 30~35. https://doi.org/10.1007/s38313-020-0229-3