DOI QR코드

DOI QR Code

Effect of SUS316L Bipolar Plate Corrosion on Contact Resistance and PEMFC Performance

SUS316L 분리판 부식에 의한 접촉저항 및 고분자전해질 연료전지 성능에 미치는 영향

  • Kim, Junseob (School of Chemical Engineering, University of Ulsan) ;
  • Kim, Junbom (School of Chemical Engineering, University of Ulsan)
  • Received : 2021.10.21
  • Accepted : 2021.11.17
  • Published : 2021.12.10

Abstract

Stainless steel was applied as bipolar plate (BP) of polymer electrolyte membrane fuel cell (PEMFC) due to high mechanical strength, electrical conductivity, and good machinability. However, stainless steel was corroded and increased contact resistance resulting PEMFC performance decrease. Although the corrosion resistance could be improved by surface treatment such as noble metal coating, there is a disadvantage of cost increase. The stainless steel corrosion behavior and passive layer influence on PEMFC performance should be studied to improve durability and economics of metal bipolar plate. In this study, SUS316L bipolar plate of 25 cm2 active area was manufactured, and experiments were conducted for corrosion behavior at an anode and cathode. The influence of SUS316L BP corrosion on fuel cell performance was measured using the polarization curve, impedance, and contact resistance. The metal ion concentration in drained water was analyzed during fuel cell operation with SUS316L BP. It was confirmed that the corrosion occurs more severely at the anode than at the cathode for SUS316L BP. The contact resistance was increased due to the passivation of SUS316L during fuel cell operation, and metal ions continuously dissolved even after the passive layer formation.

스테인리스강은 기계적 강도와 전기 전도성이 우수하고 가공이 용이하여 고분자전해질 연료전지의 분리판으로 적용되고 있다. 하지만 스테인리스강의 부식으로 인하여 접촉 저항이 증가하여 연료전지 성능이 저하하는 문제점이 있고, 귀금속 재료를 코팅하여 내식성을 높일 수 있으나 비용이 증가하는 단점이 있다. 금속 분리판의 내구성 확보와 경제성 개선을 위하여 고분자전해질 연료전지에서 스테인리스 강 분리판의 부식 거동과 부동태막에 의한 영향을 분석할 필요가 있다. 본 연구에서는 반응 면적이 25 cm2인 SUS316L 분리판을 제작하였고, 수소극과 공기극에 대한 SUS316L 분리판의 부식 거동을 분석하였다. SUS316L 분리판 부식이 연료전지 성능에 미치는 영향을 분극 곡선과 임피던스, 접촉저항을 측정하여 평가하였다. 연료전지 구동 간에 배출 수를 포집하여 SUS316L 분리판에서 용출된 금속 이온의 농도를 분석하였다. SUS316L 분리판에 대하여 공기극에서보다 수소극에서 부식이 활발하게 발생하는 것을 확인하였다. 연료전지 반응에 따라 부동태막이 형성되어 접촉 저항이 증가하였고, 부동태막이 형성된 이후에도 지속적으로 금속 이온이 용출되었다.

Keywords

Acknowledgement

이 연구는 2020년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20011633)

References

  1. A. Alaswad, A. Omran, J. R. Sodre, T. Wilberforce, G. Pignatelli, M. Dassisti, A. Baroutaji, and A. G. Olabi, Technical and commercial challenges of proton-exchange membrane (PEM) fuel cells, Energies, 14, 144 (2021). https://doi.org/10.3390/en14010144
  2. E. Ogungbemi, T. Wilberforce, O. Ijaodola, J. Thompson, and A. G. Olabi, Selection of proton exchange membrane fuel cell for transportation, Int. J. Hydrog. Energy, 46, 30625-30640 (2021). https://doi.org/10.1016/j.ijhydene.2020.06.147
  3. Y. Song, C. Zhang, C. Y. Ling, M. Han, R. Y. Yong, D. Sun, and J. Chen, Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell, Int. J. Hydrog. Energy, 45, 29832-29847 (2020). https://doi.org/10.1016/j.ijhydene.2019.07.231
  4. S. Shimpalee, V. Lilavivat, H. McCrabb, Y. Khunatorn, H. K. Lee, W. K. Lee, and J. W. Weidner, Investigation of bipolar plate materials for proton exchange membrane fuel cells, Int. J. Hydrog. Energy, 41, 13688-13696 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.163
  5. Y. Leng, P. Ming, D. Yang, and C. Zhang, Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes, J. Power Sources, 451, 227783 (2020). https://doi.org/10.1016/j.jpowsour.2020.227783
  6. N. F. Asri, T. Husaini, A. B. Sulong, E. H. Majlan, and R. W. D. Wan, Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review, Int. J. Hydrog. Energy, 42, 9135-9148 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.241
  7. K. Fu, T. Tian, Y. Chen, S. Li, C. Cai, Y. Zhang, W. Guo, and M. Pan, The durability investigation of a 10-cell metal bipolar plate proton exchange membrane fuel cell stack, Int. J. Energy Res., 43, 2605-2614 (2018). https://doi.org/10.1002/er.4283
  8. P. Yi, D. Zhang, D. Qiu, L. Peng, and X. Lai, Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells, Int. J. Hydrog. Energy, 44, 6813-6843 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.176
  9. K. Karacan, S. Celik, S. Toros, M. Alkan, and U. Aydin, Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells, Int. J. Hydrog. Energy, 45, 35149-35161 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.251
  10. J. Wind, R. Spah, W. Kaiser, and G. Bohm, Metallic bipolar plates for PEM fuel cells, J. Power Sources, 105, 256-260 (2002). https://doi.org/10.1016/S0378-7753(01)00950-8
  11. M. Sulek, J. Adams, S. Kaberline, M. Ricketts, and J. R. Waldeker, In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance, J. Power Sources, 196. 8967-8972 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.086
  12. A. Miyazawa, E. Tada, and A. Nishikata, Influence of corrosion of SS316L bipolar plate on PEFC performance, J. Power Sources, 231. 226-233 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.088
  13. H. Wang, M. A. Sweikart, and J. A. Turner, Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells, J. Power Sources, 115, 243-251 (2003). https://doi.org/10.1016/S0378-7753(03)00023-5
  14. J. Barranco, F. Barreras, A. Lozano, and M. Maza, Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plate, J. Power Sources, 196, 4283-4289 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.069
  15. S. Laedre, O. E. Kongstein, A. Oedegaard, F. Seland, and H. Karoliussen, Measuring in situ interfacial contact resistance in a proton exchange membrane fuel cell, J. Electrochem. Soc., 166, F853-F859 (2019). https://doi.org/10.1149/2.1511912jes
  16. Drive U. Fuel cell technical team roadmap. New York: US Drive Partnership, 1-34 (2017).
  17. R. A. Antunes, M. C. L. Oliveria, G. Ett, and V. Ett, Corrosion of metal bipolar plates for PEM fuel cells: A review, Int. J. Hydrog. Energy, 35, 3632-3647 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.059
  18. E. Kahveci and I. Taymaz, Experimental study on performance evaluation of PEM fuel cell by coating bipolar plate with materials having different contact angle, Fuel, 253, 1274-1281 (2019). https://doi.org/10.1016/j.fuel.2019.05.110
  19. F. Madadi, A. Rezaeian, H. Edris, and M. Zhiani, Improving performance in PEMFC by applying different coatings to metallic bipolar plates, Mater. Chem. Phys., 238, 121911 (2019). https://doi.org/10.1016/j.matchemphys.2019.121911
  20. C. Zhou, J. Wang, S. Hu, H. Tao, B. Fang, L. Li, J. Zheng and L. Zhang, Enhanced corrosion resistance of additively manufactured 316L stainless steel after heat treatment, J. Electrochem. Soc., 167, 141504 (2020). https://doi.org/10.1149/1945-7111/abc10e
  21. Y. Wang and D. O. Northwood, Effects of O2 and H2 on the corrosion of SS316L metallic bipolar plate materials in simulated anode and cathode environments of PEM fuel cell, Electrochim. Acta, 52, 6793-6798 (2007). https://doi.org/10.1016/j.electacta.2007.05.001
  22. K. Feng, G. Wu, Z. Li, X. Cai, and P. K. Chu, Corrosion behavior of SS316L in simulated and accelerated PEMFC environments, Int. J. Hydrog. Energy, 36, 13032-13042 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.058
  23. Y. Yang, X. Ning, H. Tang, L. Guo, and H. Liu, Effects of potential on corrosion behavior of uncoated SS316L bipolar plate in simulated PEM fuel cell cathode environment, Fuel Cells, 14, 868-875 (2014). https://doi.org/10.1002/fuce.201300288
  24. Y. Yang, X. Ning, H. Tang, L. Guo, and H. Liu, Effects of passive films on corrosion resistance of uncoated SS316L bipolar plates for proton exchange membrane fuel cell application, Appl. Surf. Sci., 320, 274-280 (2014). https://doi.org/10.1016/j.apsusc.2014.09.049