DOI QR코드

DOI QR Code

Rating Evaluation of Fire Risk for Combustible Materials in Case of Fire

화재 시 연소성 물질에 대한 화재 위험성 등급 평가

  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University) ;
  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과) ;
  • 진의 (강원대학교 소방방재연구센터)
  • Received : 2020.12.11
  • Accepted : 2021.01.07
  • Published : 2021.02.10

Abstract

This study investigated the fire risk assessment of woods and plastics for construction materials, focusing on the fire performance index-III (FPI-III), fire growth index-III (FGI-III), and fire risk index-IV (FRI-IV) by a newly designed method. Japanese cedar, red pine, polymethylmethacrylate (PMMA), and polyvinyl chloride (PVC) were used as test pieces. Fire characteristics of the materials were investigated using a cone calorimeter (ISO 5660-1) equipment. The fire performance index-III measured after the combustion reaction was found to be 1.0 to 15.0 with respect to PMMA. Fire risk by fire performance index-III increased in the order of PVC, red pine, Japanese cedar, and PMMA. The fire growth index-III was found to be 0.5 to 3.3 based on PMMA. Fire risk by fire growth index-III increased in the order of PVC, PMMA, red pine, and Japanese cedar. COpeak concentrations of all specimens were measured between 106 and 570 ppm. In conclusion, it is understood that Japanese cedar with a low bulk density and PMMA containing a large amount of volatile organic substances have a low fire performance index-III and high fire growth index-III, and thus have high fire risk due to fire. This was consistent with the fire risk index-IV.

본 연구는 건자재용 목재 및 플라스틱의 화재위험성 평가에 대하여 새로 고안된 화재성능지수-III (FPI-III), 화재성장지수-III (FGI-III), 화재위험성지수-IV (FRI-IV)를 중심으로 조사하였다. 시험편은 삼나무, 적송, PMMA, PVC를 사용하였다. 화재 특성은 시험편에 대하여 콘칼로리미터(ISO 5660-1) 장비를 이용하여 조사하였다. 연소반응 후 측정된 화재성능지수-III는 PMMA를 기준으로 1.0~15.0으로 나타났다. 화재성능지수-III에 의한 화재위험성은 PVC, 적송, 삼나무, PMMA 순서로 증가하였다. 화재성장지수-III는 PMMA를 기준으로 0.5~3.3으로 나타났다. 화재성장지수-III에 의한 화재위험성은 PVC, PMMA, 적송, 삼나무의 순서로 증가하였다. 모든 시편의 CO 피크농도는 106~570 ppm으로 측정되었다. 결론적으로 체적밀도가 낮은 삼나무와 PMMA와 같이 휘발성 유기물질을 다량 함유한 재료는 화재성능지수-III가 낮고, 화재성장지수-III가 높으므로 화재로 인한 화재위험성이 높은 것으로 이해된다. 이는 화재위험성지수-IV와 일치하였다.

Keywords

References

  1. T. S. Kim, Y. S. Kim, C. K. Yoon, and Y. J. Chung, The Guide of Fire Investigation, 77-98, Kimoondang, Seoul, Korea (2009).
  2. H. J. Park, H. Kim, and D. M. Ha, Predicting of fire characteristics of flame retardant treated Douglas firusing an integral model, J. KOSOS., 20, 98-104 (2005).
  3. O. Grexa, Flame retardant treated wood products, The Proceedings of Wood & Fire Safety (part one), 101-110 (2000).
  4. H. Vahabi, B. K. Kandola, and M. R. Saeb, Flame retardancy index for thermoplastic composites, Polymers, 11, 407-417 (2019). https://doi.org/10.3390/polym11030407
  5. R. Sonnier, A. Viretto, L. Dumazert, and B. Gallard. A method to study the two-step decomposition of binary blends in cone calorimeter, Combust. and Flame, 169, 1-10 (2016). https://doi.org/10.1016/j.combustflame.2016.04.016
  6. R. E. Lyon and M. L. Janssens, Polymer Flammability, The National technical information service (NTIS), U.S. Department of Commerce, Washington DC, USA (2005).
  7. R. H. White and M. A. Dietenberger, Wood Handbook: Wood as an Engineering Material, Ch.17: Fire Safety, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1999).
  8. G. Shen, S. Tao, S. Wei, Y. Zhang, R. Wang, B. Wang, W. Li, H. Shen, H. Shen, Y. Huang, Y. Chen, H. Chen, Y. Yang, W. Wang, X. Wang, W. Liu, and S. L. M. Simonich, Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in Rural China, Environ. Sci. Technol., 46, 8123-8130 (2012). https://doi.org/10.1021/es301146v
  9. J. Ding, J. Zhong, Y. Yang, B. Li, G. Shen, Y. Su, C. Wang, W. Li, H. Shen, B. Wang, R. Wang, Y. Huang, Y. Zhang, H. Cao, Y. Zhu, S. L. M. Simonich, and S. Tao, Occurrence and exposure to polycyclic aromatic hydrocarbons and their derivatives in a rural chinese home through biomass fuelled cooking, Environ. Pollution, 169, 160-166 (2012). https://doi.org/10.1016/j.envpol.2011.10.008
  10. L. Shi and M. Y. L. Chew. Fire behaviors of polymers under autoignition conditions in a cone calorimeter, Fire Safety J., 61, 243-253 (2013). https://doi.org/10.1016/j.firesaf.2013.09.021
  11. ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Geneva, Switzerland (2015).
  12. B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019). https://doi.org/10.1016/j.carbon.2019.05.002
  13. L. Yan, Z. Xu, and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Prog. Org. Coat., 135, 123-134 (2019). https://doi.org/10.1016/j.porgcoat.2019.05.043
  14. T. Fateh, T. Rogaume, J. Luche, F. Richard, and F. Jabou, Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter-FTIR apparatus, J. Anal. Appl. Pyrolysis, 107, 87-100 (2014). https://doi.org/10.1016/j.jaap.2014.02.008
  15. Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018). https://doi.org/10.14478/ACE.2018.1076
  16. Y. J. Chung and E. Jin, Assessment of smoke risk of combustible materials in fire, Appl. Chem. Eng., 31, 277-283 (2020). https://doi.org/10.14478/ACE.2020.1024
  17. W. T. Simpso, Drying and Control of Moisture Content and Dimensional Changes, Chap. 12, Wood Handbook-wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA, 1-21 (1987).
  18. D. J. Silva and H. Wiebeck, Predicting LDPE/HDPE blend composition by CARS-PLS regression and confocal Raman spectroscopy, Polimeros, 29, 1-7 (2019).
  19. Y. Liu, B. Fan, A. L. Hamon, D. He, and J. Bai, Thickness effect on the tensile and dynamic mechanical properties of graphene nano-platelets reinforced polymer nanocomposites, HAL, 2, 21-27 (2020).
  20. Y. J. Chung, Combustion characteristics of the Quercus varialis and Zelkova serrata dried at room temperature, J. Korean For. Soc., 99, 96-101 (2010).
  21. J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, USA (1998)
  22. Y. J. Chung, Comparison of combustion properties of native wood species used for fire pots in Korea, J. Ind. Eng. Chem., 16, 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  23. F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal Analysis in Polymer Flammability, Chap. 8. In : Thermal Characterization of Polymeric Materials, Academic press, New York, USA (1981).
  24. M. J. Spearpoint and J. G. Quintiere. Predicting the piloted ignition of wood in the cone calorimeter using an integral model - effect of species, grain orientation and heat flux, Fire Safety J., 36, 391-415 (2001). https://doi.org/10.1016/S0379-7112(00)00055-2
  25. J. D. Dehaan, Kirk's Fire Investigation (Fifth Ed.), 84-112, Pearson, London, England (2002).
  26. V. Babrauskas, Development of the cone calorimeter - A bench - scale, heat release rate apparatus based on oxygen consumption, Fire Mater., 8, 81-95 (1984). https://doi.org/10.1002/fam.810080206
  27. T. Y. Woo, J. S. You, and Y. J. Chung, Combustion properties of construction lumber used in every life, Fire Sci. Eng., 31, 37-43 (2017). https://doi.org/10.7731/KIFSE.2017.31.5.037
  28. C. Jiao, X. Chen, and J. Zhang, Synergistic effects of Fe2O3 with layered double hydroxides in EVA/LDH composites, J. Fire Sci., 27, 465-479 (2009). https://doi.org/10.1177/0734904109102033
  29. T. Fateh, T. Rogaume, J. Luche, F. Richard, and F. Jabouille, Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter - FTIR apparatus, J. Anal. Appl. Pyrolysis., 107, 87-100 (2014). https://doi.org/10.1016/j.jaap.2014.02.008
  30. J. Luche, T. Rogaume, F. Richard, and E. Guillaume, Characterization of thermal properties and analysis of combustion behavior of PMMA in a cone calorimeter, Fire Saf. J., 46, 451-461 (2011). https://doi.org/10.1016/j.firesaf.2011.07.005
  31. OHSA, Carbon Monoxide, OSHA Fact Sheet, United States National Institute for Occupational Safety and Health, September 14, USA (2009).
  32. OHSA, Carbon Dioxide, Toxicological Review of Selected Chemicals, Final Rule on Air Comments Project, OHSA's Comments, Jannuary 19, USA (1989).
  33. D. A. Purser, A bioassay model for testing the incapacitating effects of exposure to combustion product atmospheres using cynomolgus monkeys, J. Fire Sci., 2, 20-26 (1984). https://doi.org/10.1177/073490418400200104
  34. MSHA, Carbon Monoxide, MSHA's Occupational Illness and Injury Prevention Program Topic, U. S. Department of Labor, USA (2015).