DOI QR코드

DOI QR Code

꾸지뽕나무 잎과 우슬 복합물의 골 질환 개선 소재 개발가능성에 대한 연구

Study on the Potential of Development of Materials for Bone Disease Improvement of Cudrania tricuspidata Leaf and Achyranthes japonica Nakai Complex

  • 정길호 (대전대학교 한의과대학 병리학교실) ;
  • 김동희 (대전대학교 한의과대학 병리학교실)
  • Cheong, Kil-Ho (Department of Pathology, College of Korean Medicine, Daejeon University) ;
  • Kim, Dong-Hee (Department of Pathology, College of Korean Medicine, Daejeon University)
  • 투고 : 2021.08.04
  • 심사 : 2021.10.01
  • 발행 : 2021.10.25

초록

This study was conducted to suggest the Cudrania tricuspidata leaf and Achyranthes japonica Nakai Complex (CAC) possibility of use as a functional natural material for improving bone disease. Cudrania tricuspidata leaf and Achyranthes japonica Nakai were mixed in the same amount, extracted with hot water, and then powdered and used in the study. After, the cytotoxicity of CAC for osteoblasts (MG63 cell), osteoclasts (differentiated RAW264.7 cell), and macrophages (RAW264.7 cell) were evaluated by MTT assay, and ALP assay and TRAP assay were performed to confirm the differentiation capacity of osteoblasts and osteoclasts, respectively. In addition, the anti-inflammatory effect in macrophages was evaluated by ELISA, qRT-PCR, and western blot assay. CAC did not proliferated osteoblasts and osteoclasts, but increased ALP activity against osteoblasts differentiation and decreased TRAP activity against osteoclasts differentiation. CAC did not proliferated macrophages but decreased nitric oxide production. Also, decreased NOS2, IL1B, IL6, PTGS2, and TNFA gene expression, and JNK and p38 protein phosphorylation in a concentration-dependent manner, but ERK protein phosphorylation was not changed. As a result, CAC increased the differentiation and activation of osteoblasts, inhibited the differentiation and activation of osteoclasts, and regulated the expression of inflammatory cytokines in macrophages. Therefore, it is thought that CAC can be used as a functional natural material that prevents bone disease and has an anti-inflammatory effect.

키워드

참고문헌

  1. McNally EA, Schwarcz HP, Botton GA, Arsenault AL. A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PloS one. 2012;7(1):e29258. https://doi.org/10.1371/journal.pone.0029258
  2. Clarke B. Normal bone anatomy and physiology. Clinical journal of the American Society of Nephrology. 2008;3(Supplement 3):S131-S9. https://doi.org/10.2215/CJN.04151206
  3. Maruotti N, Corrado A, Cantatore FP. Osteoblast role in osteoarthritis pathogenesis. Journal of cellular physiology. 2017;232(11):2957-63. https://doi.org/10.1002/jcp.25969
  4. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clinics in geriatric medicine. 2010;26(3):355-69. https://doi.org/10.1016/j.cger.2010.03.001
  5. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. The Lancet. 2002;359(9321):1929-36. https://doi.org/10.1016/S0140-6736(02)08761-5
  6. Kang S-C, Lim J-D, Lee J-C, Park H-J, Kang N-S, Sohn E-H. Effects of fructus and semen from Rosa rugosa on osteoimmune cells. Korean Journal of Plant Resources. 2010;23(2):157-64.
  7. Joo I-H, Kim D-H. Effects of Yeonsan-Ogye Egg on MIA-induced Osteoarthritis Rat. The Korea Journal of Herbology. 2017;32(6):63-9. https://doi.org/10.6116/KJH.2017.32.6.63
  8. Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD. Postmenopausal hormone replacement therapy: scientific review. Jama. 2002;288(7):872-81. https://doi.org/10.1001/jama.288.7.872
  9. Yang KA, Saris D, Dhert W, Verbout A. Osteoarthritis of the knee: current treatment options and future directions. Current Orthopaedics. 2004;18(4):311-20. https://doi.org/10.1016/j.cuor.2004.04.005
  10. Solomon DH, Shao M, Wolski K, Nissen S, Husni ME, Paynter N. Derivation and validation of a major toxicity risk score among nonsteroidal antiinflammatory drug users based on data from a randomized controlled trial. Arthritis & Rheumatology. 2019;71(8):1225-31. https://doi.org/10.1002/art.40870
  11. Chang SH, Jung EJ, Lim DG, Oyungerel B, Lim KI, Her E, et al. Anti-inflammatory action of Cudrania tricuspidata on spleen cell and T lymphocyte proliferation. Journal of Pharmacy and Pharmacology. 2008;60(9):1221-6. https://doi.org/10.1211/jpp.60.9.0015
  12. Hiep NT, Kwon J, Kim D-W, Hong S, Guo Y, Hwang BY, et al. Neuroprotective constituents from the fruits of Maclura tricuspidata. Tetrahedron. 2017;73(19):2747-59. https://doi.org/10.1016/j.tet.2017.03.064
  13. Kim D-W, Lee W-J, Asmelash Gebru Y, Choi H-S, Yeo S-H, Jeong Y-J, et al. Comparison of bioactive compounds and antioxidant activities of Maclura tricuspidata fruit extracts at different maturity stages. Molecules. 2019;24(3):567. https://doi.org/10.3390/molecules24030567
  14. Han XH, Hong SS, Jin Q, Li D, Kim H-K, Lee J, et al. Prenylated and benzylated flavonoids from the fruits of Cudrania tricuspidata. Journal of natural products. 2009;72(1):164-7. https://doi.org/10.1021/np800418j
  15. Hiep NT, Kwon J, Kim D-W, Hwang BY, Lee H-J, Mar W, et al. Isoflavones with neuroprotective activities from fruits of Cudrania tricuspidata. Phytochemistry. 2015;111:141-8. https://doi.org/10.1016/j.phytochem.2014.10.021
  16. Lee H, Ha H, Lee JK, Seo Cs, Lee Nh, Jung DY, et al. The fruits of Cudrania tricuspidata suppress development of atopic dermatitis in NC/Nga mice. Phytotherapy Research. 2012;26(4):594-9. https://doi.org/10.1002/ptr.3577
  17. Jo YH, Kim SB, Liu Q, Do S-G, Hwang BY, Lee MK. Comparison of pancreatic lipase inhibitory isoflavonoids from unripe and ripe fruits of Cudrania tricuspidata. PloS one. 2017;12(3):e0172069. https://doi.org/10.1371/journal.pone.0172069
  18. Jo YH, Choi K-M, Liu Q, Kim SB, Ji H-J, Kim M, et al. Anti-obesity effect of 6, 8-diprenylgenistein, an isoflavonoid of Cudrania tricuspidata fruits in high-fat diet-induced obese mice. Nutrients. 2015;7(12):10480-90. https://doi.org/10.3390/nu7125544
  19. Lee YJ, Kim S, Lee SJ, Ham I, Whang WK. Antioxidant activities of new flavonoids from Cudrania tricuspidata root bark. Archives of pharmacal research. 2009;32(2):195-200. https://doi.org/10.1007/s12272-009-1135-z
  20. Jeong G-S, Lee D-S, Kim Y-C. Cudratricusxanthone A from Cudrania tricuspidata suppresses pro-inflammatory mediators through expression of anti-inflammatory heme oxygenase-1 in RAW264. 7 macrophages. International Immunopharmacology. 2009;9(2):241-6. https://doi.org/10.1016/j.intimp.2008.11.008
  21. Park KH, Park Y-D, Han J-M, Im K-R, Lee BW, Jeong IY, et al. Anti-atherosclerotic and anti-inflammatory activities of catecholic xanthones and flavonoids isolated from Cudrania tricuspidata. Bioorganic & medicinal chemistry letters. 2006;16(21):5580-3. https://doi.org/10.1016/j.bmcl.2006.08.032
  22. Kim O-K, Nam D-E, Jun W, Lee J. Cudrania tricuspidata water extract improved obesity-induced hepatic insulin resistance in db/db mice by suppressing ER stress and inflammation. Food & nutrition research. 2015;59(1):29165. https://doi.org/10.3402/fnr.v59.29165
  23. Song S-H, Ki SH, Park D-H, Moon H-S, Lee C-D, Yoon I-S, et al. Quantitative analysis, extraction optimization, and biological evaluation of Cudrania tricuspidata leaf and fruit extracts. Molecules. 2017;22(9):1489. https://doi.org/10.3390/molecules22091489
  24. Park J, Kim I. Effects of dietary Achyranthes japonica extract supplementation on the growth performance, total tract digestibility, cecal microflora, excreta noxious gas emission, and meat quality of broiler chickens. Poultry science. 2020;99(1):463-70. https://doi.org/10.3382/ps/pez533
  25. Lee S-G, Lee E-J, Park W-D, Kim J-B, Kim E-O, Choi S-W. Anti-inflammatory and anti-osteoarthritis effects of fermented Achyranthes japonica Nakai. Journal of Ethnopharmacology. 2012;142(3):634-41. https://doi.org/10.1016/j.jep.2012.05.020
  26. Al-Mijan M, Park H, Lee Y, Lim B. Evaluation of the antioxidant and anti-inflammatory potential of fermented Achyranthes japonica Nakai extract. Nat Prod Chem Res. 2018;6:337-43.
  27. Jung S-M, Choi S-I, Park S-M, Heo T-R. Antimicrobial effect of Achyranthes japonica Nakai extracts against Clostridium difficile. Korean Journal of Food Science and Technology. 2007;39(5):564-8.
  28. Kim C-S, Park Y-K. The therapeutic effect of Achyranthis Radix on the collagen-induced arthritis in mice. The Korea Journal of Herbology. 2010;25(4):129-35. https://doi.org/10.6116/KJH.2010.25.4.129
  29. Bang SY, Kim J-H, Kim H-Y, Lee YJ, Park SY, Lee SJ, et al. Achyranthes japonica exhibits anti-inflammatory effect via NF-κB suppression and HO-1 induction in macrophages. Journal of ethnopharmacology. 2012;144(1):109-17. https://doi.org/10.1016/j.jep.2012.08.037
  30. Iqbal Z, Shah Y, Ahmad L. Evaluation of anti-inflammatory activity of selected medicinal plants of Khyber Pakhtunkhwa, Pakistan. Pak J Pharm Sci. 2014;27(2):365-8.
  31. Jang G-Y, Kim H-Y, Lee S-H, Kang Y-R, Hwang I-G, Woo K-S, et al. Effects of heat treatment and extraction method on antioxidant activity of several medicinal plants. Journal of the Korean society of food science and nutrition. 2012;41(7):914-20. https://doi.org/10.3746/JKFN.2012.41.7.914
  32. Yin X, Zhou C, Li J, Liu R, Shi B, Yuan Q, et al. Autophagy in bone homeostasis and the onset of osteoporosis. Bone research. 2019;7(1):1-16. https://doi.org/10.1038/s41413-018-0036-5
  33. Epsley S, Tadros S, Farid A, Kargilis D, Mehta S, Rajapakse CS. The Effect of Inflammation on Bone. Frontiers in Physiology. 2021;11(1695).
  34. Ryu J, Kim HJ, Chang EJ, Huang H, Banno Y, Kim HH. Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. The EMBO journal. 2006;25(24):5840-51. https://doi.org/10.1038/sj.emboj.7601430
  35. Rodriguez-Carballo E, Gamez B, Ventura F. p38 MAPK signaling in osteoblast differentiation. Frontiers in cell and developmental biology. 2016;4:40. https://doi.org/10.3389/fcell.2016.00040
  36. Jeon M-H, Kim M-H. Effect of Hijikia fusiforme fractions on proliferation and differentiation in osteoblastic MC3T3-E1 cells. Journal of life science. 2011;21(2):300-8. https://doi.org/10.5352/JLS.2011.21.2.300
  37. Seo M, Baek M, Lee JH, Lee HJ, Kim I-W, Kim SY, et al. Osteoblastogenic activity of Tenebrio molitor larvae oil on the MG-63 osteoblastic cell. Journal of Life Science. 2019;29(9):1027-33. https://doi.org/10.5352/JLS.2019.29.9.1027
  38. Owen R, Reilly GC. In vitro models of bone remodelling and associated disorders. Frontiers in bioengineering and biotechnology. 2018;6:134. https://doi.org/10.3389/fbioe.2018.00134
  39. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337-42. https://doi.org/10.1038/nature01658
  40. Lee A-S, Jang S-J. Effect of Myricetin in Osteoclast Differentiation and Bone Resorption. Journal of Physiology & Pathology in Korean Medicine. 2010;24(1):74-9.
  41. Moens U, Kostenko S, Sveinbjornsson B. The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes. 2013;4(2):101-33. https://doi.org/10.3390/genes4020101
  42. Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harbor perspectives in biology. 2012;4(3):a006049. https://doi.org/10.1101/cshperspect.a006049
  43. Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiological reviews. 2012;92(2):689-737. https://doi.org/10.1152/physrev.00028.2011
  44. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911-2. https://doi.org/10.1126/science.1072682