DOI QR코드

DOI QR Code

Genetic approaches toward understanding the individual variation in cardiac structure, function and responses to exercise training

  • Kim, Minsun (Department of Sports Science, Seoul National University of Science and Technology) ;
  • Kim, Seung Kyum (Department of Sports Science, Seoul National University of Science and Technology)
  • Received : 2020.08.19
  • Accepted : 2020.11.02
  • Published : 2021.01.01

Abstract

Cardiovascular disease (CVD) accounts for approximately 30% of all deaths worldwide and its prevalence is constantly increasing despite advancements in medical treatments. Cardiac remodeling and dysfunction are independent risk factors for CVD. Recent studies have demonstrated that cardiac structure and function are genetically influenced, suggesting that understanding the genetic basis for cardiac structure and function could provide new insights into developing novel therapeutic targets for CVD. Regular exercise has long been considered a robust nontherapeutic method of treating or preventing CVD. However, recent studies also indicate that there is inter-individual variation in response to exercise. Nevertheless, the genetic basis for cardiac structure and function as well as their responses to exercise training have yet to be fully elucidated. Therefore, this review summarizes accumulated evidence supporting the genetic contribution to these traits, including findings from population-based studies and unbiased large genomic-scale studies in humans.

Keywords

Acknowledgement

This study was supported by the Research Program funded by SeoulTech (Seoul National University of Science and Technology) (SKK).

References

  1. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, Mente A, Yusuf S. Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ Res. 2017;121:677-694. https://doi.org/10.1161/CIRCRESAHA.117.308903
  2. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, LloydJones DM, Nelson SA, Nichol G, Orenstein D, Wilson PW, Woo YJ. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123:933-944. https://doi.org/10.1161/CIR.0b013e31820a55f5
  3. Wu A. Heart failure. Ann Intern Med. 2018;168:ITC81-ITC96. https://doi.org/10.7326/aitc201806050
  4. Liu S, Li Y, Zeng X, Wang H, Yin P, Wang L, Liu Y, Liu J, Qi J, Ran S, Yang S, Zhou M. Burden of cardiovascular diseases in China, 1990- 2016: findings from the 2016 Global Burden of Disease study. JAMA Cardiol. 2019;4:342-352. https://doi.org/10.1001/jamacardio.2019.0295
  5. Gu D, Gupta A, Muntner P, Hu S, Duan X, Chen J, Reynolds RF, Whelton PK, He J. Prevalence of cardiovascular disease risk factor clustering among the adult population of China: results from the International Collaborative Study of Cardiovascular Disease in Asia (InterAsia). Circulation. 2005;112:658-665. https://doi.org/10.1161/CIRCULATIONAHA.104.515072
  6. Lloyd-Jones DM, Nam BH, D'Agostino RB Sr, Levy D, Murabito JM, Wang TJ, Wilson PW, O'Donnell CJ. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA. 2004;291:2204-2211. https://doi.org/10.1001/jama.291.18.2204
  7. Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, Ntalla I, Surendran P, Liu C, Cook JP, Kraja AT, Drenos F, Loh M, Verweij N, Marten J, Karaman I, Lepe MP, O'Reilly PF, Knight J, Snieder H, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017;49:403-415. https://doi.org/10.1038/ng.3768
  8. Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, Zeng L, Ntalla I, Lai FY, Hopewell JC, Giannakopoulou O, Jiang T, Hamby SE, Di Angelantonio E, Assimes TL, Bottinger EP, Chambers JC, Clarke R, Palmer CNA, Cubbon RM, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet. 2017;49:1385-1391. https://doi.org/10.1038/ng.3913
  9. Sivapalaratnam S, Motazacker MM, Maiwald S, Hovingh GK, Kastelein JJ, Levi M, Trip MD, Dallinga-Thie GM. Genome-wide association studies in atherosclerosis. Curr Atheroscler Rep. 2011; 13:225-232. https://doi.org/10.1007/s11883-011-0173-4
  10. Smith NL, Felix JF, Morrison AC, Demissie S, Glazer NL, Loehr LR, Cupples LA, Dehghan A, Lumley T, Rosamond WD, Lieb W, Rivadeneira F, Bis JC, Folsom AR, Benjamin E, Aulchenko YS, Haritunians T, Couper D, Murabito J, Wang YA, et al. Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. Circ Cardiovasc Genet. 2010;3:256-266. https://doi.org/10.1161/CIRCGENETICS.109.895763
  11. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128:388-400. https://doi.org/10.1161/CIRCULATIONAHA.113.001878
  12. Tsao CW, Gona PN, Salton CJ, Chuang ML, Levy D, Manning WJ, O'Donnell CJ. Left ventricular structure and risk of cardiovascular events: a Framingham Heart Study cardiac magnetic resonance study. J Am Heart Assoc. 2015;4:e002188. https://doi.org/10.1161/JAHA.115.002188
  13. Swan L, Birnie DH, Padmanabhan S, Inglis G, Connell JM, Hillis WS. The genetic determination of left ventricular mass in healthy adults. Eur Heart J. 2003;24:577-582.
  14. Arnett DK, Meyers KJ, Devereux RB, Tiwari HK, Gu CC, Vaughan LK, Perry RT, Patki A, Claas SA, Sun YV, Broeckel U, Kardia SL. Genetic variation in NCAM1 contributes to left ventricular wall thickness in hypertensive families. Circ Res. 2011;108:279-283. https://doi.org/10.1161/CIRCRESAHA.110.239210
  15. Aung N, Vargas JD, Yang C, Cabrera CP, Warren HR, Fung K, Tzanis E, Barnes MR, Rotter JI, Taylor KD, Manichaikul AW, Lima JAC, Bluemke DA, Piechnik SK, Neubauer S, Munroe PB, Petersen SE. Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development. Circulation. 2019;140:1318-1330. https://doi.org/10.1161/CIRCULATIONAHA.119.041161
  16. Kanai M, Akiyama M, Takahashi A, Matoba N, Momozawa Y, Ikeda M, Iwata N, Ikegawa S, Hirata M, Matsuda K, Kubo M, Okada Y, Kamatani Y. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat Genet. 2018;50:390-400. https://doi.org/10.1038/s41588-018-0047-6
  17. Do AN, Zhao W, Baldridge AS, Raffield LM, Wiggins KL, Shah SJ, Aslibekyan S, Tiwari HK, Limdi N, Zhi D, Sitlani CM, Taylor KD, Psaty BM, Sotoodehnia N, Brody JA, Rasmussen-Torvik LJ, LloydJones D, Lange LA, Wilson JG, Smith JA, et al. Genome-wide metaanalysis of SNP and antihypertensive medication interactions on left ventricular traits in African Americans. Mol Genet Genomic Med. 2019;7:e00788.
  18. Wild PS, Felix JF, Schillert A, Teumer A, Chen MH, Leening MJG, Volker U, Grossmann V, Brody JA, Irvin MR, Shah SJ, Pramana S, Lieb W, Schmidt R, Stanton AV, Malzahn D, Smith AV, Sundstrom J, Minelli C, Ruggiero D, et al. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function. J Clin Invest. 2017;127:1798-1812. https://doi.org/10.1172/JCI84840
  19. Fox ER, Musani SK, Barbalic M, Lin H, Yu B, Ogunyankin KO, Smith NL, Kutlar A, Glazer NL, Post WS, Paltoo DN, Dries DL, Farlow DN, Duarte CW, Kardia SL, Meyers KJ, Sun YV, Arnett DK, Patki AA, Sha J, et al. Genome-wide association study of cardiac structure and systolic function in African Americans: the Candidate Gene Association Resource (CARe) study. Circ Cardiovasc Genet. 2013;6:37-46. https://doi.org/10.1161/CIRCGENETICS.111.962365
  20. Dueker ND, Guo S, Beecham A, Wang L, Blanton SH, Di Tullio MR, Rundek T, Sacco RL. Sequencing of linkage region on chromosome 12p11 identifies PKP2 as a candidate gene for left ventricular mass in Dominican families. G3 (Bethesda). 2018;8:659-668. https://doi.org/10.1534/g3.117.300358
  21. Vasan RS, Glazer NL, Felix JF, Lieb W, Wild PS, Felix SB, Watzinger N, Larson MG, Smith NL, Dehghan A, Grosshennig A, Schillert A, Teumer A, Schmidt R, Kathiresan S, Lumley T, Aulchenko YS, Konig IR, Zeller T, Homuth G, et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA. 2009;302:168-178. https://doi.org/10.1001/jama.2009.978-a
  22. Kathiresan S, Srivastava D. Genetics of human cardiovascular disease. Cell. 2012;148:1242-1257. https://doi.org/10.1016/j.cell.2012.03.001
  23. Kim MS, Patel KP, Teng AK, Berens AJ, Lachance J. Genetic disease risks can be misestimated across global populations. Genome Biol. 2018;19:179. https://doi.org/10.1186/s13059-018-1561-7
  24. Zadro JR, Shirley D, Andrade TB, Scurrah KJ, Bauman A, Ferreira PH. The beneficial effects of physical activity: is it down to your genes? A systematic review and meta-analysis of twin and family studies. Sports Med Open. 2017;3:4. https://doi.org/10.1186/s40798-016-0073-9
  25. Galton F. The history of twins, as a criterion of the relative powers of nature and nurture (1,2). Int J Epidemiol. 2012;41:905-911. https://doi.org/10.1093/ije/dys097
  26. Boomsma D, Busjahn A, Peltonen L. Classical twin studies and beyond. Nat Rev Genet. 2002;3:872-882. https://doi.org/10.1038/nrg932
  27. Badzioch MD, Igo RP Jr, Gagnon F, Brunzell JD, Krauss RM, Motulsky AG, Wijsman EM, Jarvik GP. Low-density lipoprotein particle size loci in familial combined hyperlipidemia: evidence for multiple loci from a genome scan. Arterioscler Thromb Vasc Biol. 2004;24:1942-1950. https://doi.org/10.1161/01.ATV.0000143499.09575.93
  28. Borecki IB, Province MA. Genetic and genomic discovery using family studies. Circulation. 2008;118:1057-1063. https://doi.org/10.1161/CIRCULATIONAHA.107.714592
  29. Zhao LP, Hsu L, Davidov O, Potter J, Elston RC, Prentice RL. Population-based family study designs: an interdisciplinary research framework for genetic epidemiology. Genet Epidemiol. 1997;14:365-388. https://doi.org/10.1002/(SICI)1098-2272(1997)14:4<365::AID-GEPI3>3.0.CO;2-2
  30. Wang Y, Wang JG. Genome-wide association studies of hypertension and several other cardiovascular diseases. Pulse (Basel). 2019;6:169-186. https://doi.org/10.1159/000496150
  31. Stranger BE, Stahl EA, Raj T. Progress and promise of genomewide association studies for human complex trait genetics. Genetics. 2011;187:367-383. https://doi.org/10.1534/genetics.110.120907
  32. Kessler T, Vilne B, Schunkert H. The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med. 2016;8:688-701. https://doi.org/10.15252/emmm.201506174
  33. Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL, Izquierdo M, Ruilope LM, Lucia A. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol. 2018;15:731-743. https://doi.org/10.1038/s41569-018-0065-1
  34. Church TS, Earnest CP, Skinner JS, Blair SN. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA. 2007; 297:2081-2091. https://doi.org/10.1001/jama.297.19.2081
  35. Jeong SW, Kim SH, Kang SH, Kim HJ, Yoon CH, Youn TJ, Chae IH. Mortality reduction with physical activity in patients with and without cardiovascular disease. Eur Heart J. 2019;40:3547-3555. https://doi.org/10.1093/eurheartj/ehz564
  36. Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Front Cardiovasc Med. 2018;5:135. https://doi.org/10.3389/fcvm.2018.00135
  37. Lavie CJ, Arena R, Swift DL, Johannsen NM, Sui X, Lee DC, Earnest CP, Church TS, O'Keefe JH, Milani RV, Blair SN. Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ Res. 2015;117:207-219. https://doi.org/10.1161/CIRCRESAHA.117.305205
  38. Arbab-Zadeh A, Perhonen M, Howden E, Peshock RM, Zhang R, Adams-Huet B, Haykowsky MJ, Levine BD. Cardiac remodeling in response to 1 year of intensive endurance training. Circulation. 2014;130:2152-2161. https://doi.org/10.1161/CIRCULATIONAHA.114.010775
  39. Kim SK, Massett MP. Genetic regulation of endothelial vasomotor function. Front Physiol. 2016;7:571. https://doi.org/10.3389/fphys.2016.00571
  40. Alvarez C, Ramirez-Campillo R, Ramirez-Velez R, Izquierdo M. Effects and prevalence of nonresponders after 12 weeks of high-intensity interval or resistance training in women with insulin resistance: a randomized trial. J Appl Physiol. 2017;122:985-996. https://doi.org/10.1152/japplphysiol.01037.2016
  41. Bonafiglia JT, Rotundo MP, Whittall JP, Scribbans TD, Graham RB, Gurd BJ. Inter-individual variability in the adaptive responses to endurance and sprint interval training: a randomized crossover study. PLoS One. 2016;11:e0167790. https://doi.org/10.1371/journal.pone.0167790
  42. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33(6 Suppl):S446-S451; discussion S452-S453. https://doi.org/10.1097/00005768-200106001-00013
  43. Williams CJ, Williams MG, Eynon N, Ashton KJ, Little JP, Wisloff U, Coombes JS. Genes to predict VO2max trainability: a systematic review. BMC Genomics. 2017;18(Suppl 8):831. https://doi.org/10.1186/s12864-017-4192-6
  44. Bouchard C, Blair SN, Church TS, Earnest CP, Hagberg JM, Hakkinen K, Jenkins NT, Karavirta L, Kraus WE, Leon AS, Rao DC, Sarzynski MA, Skinner JS, Slentz CA, Rankinen T. Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS One. 2012;7:e37887. https://doi.org/10.1371/journal.pone.0037887
  45. Bouchard C, Rankinen T, Timmons JA. Genomics and genetics in the biology of adaptation to exercise. Compr Physiol. 2011;1:1603-1648. https://doi.org/10.1002/cphy.c100059
  46. Ross R, Goodpaster BH, Koch LG, Sarzynski MA, Kohrt WM, Johannsen NM, Skinner JS, Castro A, Irving BA, Noland RC, Sparks LM, Spielmann G, Day AG, Pitsch W, Hopkins WG, Bouchard C. Precision exercise medicine: understanding exercise response variability. Br J Sports Med. 2019;53:1141-1153. https://doi.org/10.1136/bjsports-2018-100328
  47. Bouchard C, Leon AS, Rao DC, Skinner JS, Wilmore JH, Gagnon J. The HERITAGE family study. Aims, design, and measurement protocol. Med Sci Sports Exerc. 1995;27:721-729.
  48. Adams TD, Yanowitz FG, Fisher AG, Ridges JD, Nelson AG, Hagan AD, Williams RR, Hunt SC. Heritability of cardiac size: an echocardiographic and electrocardiographic study of monozygotic and dizygotic twins. Circulation. 1985;71:39-44. https://doi.org/10.1161/01.CIR.71.1.39
  49. Fox ER, Klos KL, Penman AD, Blair GJ, Blossom BD, Arnett D, Devereux RB, Samdarshi T, Boerwinkle E, Mosley TH Jr. Heritability and genetic linkage of left ventricular mass, systolic and diastolic function in hypertensive African Americans (from the GENOA Study). Am J Hypertens. 2010;23:870-875. https://doi.org/10.1038/ajh.2010.67
  50. Garner C, Lecomte E, Visvikis S, Abergel E, Lathrop M, Soubrier F. Genetic and environmental influences on left ventricular mass. A family study. Hypertension. 2000;36:740-746. https://doi.org/10.1161/01.hyp.36.5.740
  51. Juo SH, Di Tullio MR, Lin HF, Rundek T, Boden-Albala B, Homma S, Sacco RL. Heritability of left ventricular mass and other morphologic variables in Caribbean Hispanic subjects: the Northern Manhattan Family Study. J Am Coll Cardiol. 2005;46:735-737. https://doi.org/10.1016/j.jacc.2005.05.025
  52. Lam CS, Liu X, Yang Q, Larson MG, Pencina MJ, Aragam J, Redfield MM, Benjamin EJ, Vasan RS. Familial aggregation of left ventricular geometry and association with parental heart failure: the Framingham Heart Study. Circ Cardiovasc Genet. 2010;3:492-498. https://doi.org/10.1161/CIRCGENETICS.110.941088
  53. Post WS, Larson MG, Myers RH, Galderisi M, Levy D. Heritability of left ventricular mass: the Framingham Heart Study. Hypertension. 1997;30:1025-1028. https://doi.org/10.1161/01.hyp.30.5.1025
  54. Bella JN, MacCluer JW, Roman MJ, Almasy L, North KE, Best LG, Lee ET, Fabsitz RR, Howard BV, Devereux RB. Heritability of left ventricular dimensions and mass in American Indians: the Strong Heart Study. J Hypertens. 2004;22:281-286. https://doi.org/10.1097/00004872-200402000-00011
  55. Bielen E, Fagard R, Amery A. The inheritance of left ventricular structure and function assessed by imaging and Doppler echocardiography. Am Heart J. 1991;121(6 Pt 1):1743-1749. https://doi.org/10.1016/0002-8703(91)90021-9
  56. Hannukainen JC, Kujala UM, Toikka J, Heinonen OJ, Kapanen J, Vahlberg T, Kaprio J, Kalliokoski KK. Cardiac structure and function in monozygotic twin pairs discordant for physical fitness. J Appl Physiol. 2005;99:535-541. https://doi.org/10.1152/japplphysiol.00107.2005
  57. Verhaaren HA, Schieken RM, Mosteller M, Hewitt JK, Eaves LJ, Nance WE. Bivariate genetic analysis of left ventricular mass and weight in pubertal twins (the Medical College of Virginia twin study). Am J Cardiol. 1991;68:661-668. https://doi.org/10.1016/0002-9149(91)90361-N
  58. Busjahn CA, Schulz-Menger J, Abdel-Aty H, Rudolph A, Jordan J, Luft FC, Busjahn A. Heritability of left ventricular and papillary muscle heart size: a twin study with cardiac magnetic resonance imaging. Eur Heart J. 2009;30:1643-1647. https://doi.org/10.1093/eurheartj/ehp142
  59. Kapuku GK, Ge D, Vemulapalli S, Harshfield GA, Treiber FA, Snieder H. Change of genetic determinants of left ventricular structure in adolescence: longitudinal evidence from the Georgia cardiovascular twin study. Am J Hypertens. 2008;21:799-805. https://doi.org/10.1038/ajh.2008.178
  60. Noh HM, Lee SC, Park SW, Sung J, Song YM. Genetic influence on left ventricular structure and function: a Korean twin and family study. Twin Res Hum Genet. 2015;18:281-289. https://doi.org/10.1017/thg.2015.18
  61. Fagard R, Van Den Broeke C, Bielen E, Amery A. Maximum oxygen uptake and cardiac size and function in twins. Am J Cardiol. 1987;60:1362-1367. https://doi.org/10.1016/0002-9149(87)90620-5
  62. Bielen E, Fagard R, Amery A. Inheritance of heart structure and physical exercise capacity: a study of left ventricular structure and exercise capacity in 7-year-old twins. Eur Heart J. 1990;11:7-16. https://doi.org/10.1093/oxfordjournals.eurheartj.a059595
  63. Bielen EC, Fagard RH, Amery AK. Inheritance of acute cardiac changes during bicycle exercise: an echocardiographic study in twins. Med Sci Sports Exerc. 1991;23:1254-1259.
  64. Vasan RS, Larson MG, Aragam J, Wang TJ, Mitchell GF, Kathiresan S, Newton-Cheh C, Vita JA, Keyes MJ, O'Donnell CJ, Levy D, Benjamin EJ. Genome-wide association of echocardiographic dimensions, brachial artery endothelial function and treadmill exercise responses in the Framingham Heart Study. BMC Med Genet. 2007;8(Suppl 1):S2. https://doi.org/10.1186/1471-2350-8-S1-S2
  65. Palatini P, Krause L, Amerena J, Nesbitt S, Majahalme S, Tikhonoff V, Valentini M, Julius S. Genetic contribution to the variance in left ventricular mass: the Tecumseh Offspring Study. J Hypertens. 2001;19:1217-1222. https://doi.org/10.1097/00004872-200107000-00006
  66. An P, Rice T, Gagnon J, Leon AS, Skinner JS, Bouchard C, Rao DC, Wilmore JH. Familial aggregation of stroke volume and cardiac output during submaximal exercise: the HERITAGE Family Study. Int J Sports Med. 2000;21:566-572. https://doi.org/10.1055/s-2000-12983
  67. Schunkert H, Brockel U, Hengstenberg C, Luchner A, Muscholl MW, Kurzidim K, Kuch B, Doring A, Riegger GA, Hense HW. Familial predisposition of left ventricular hypertrophy. J Am Coll Cardiol. 1999;33:1685-1691. https://doi.org/10.1016/S0735-1097(99)00050-9
  68. Arnett DK, Hong Y, Bella JN, Oberman A, Kitzman DW, Hopkins PN, Rao DC, Devereux RB. Sibling correlation of left ventricular mass and geometry in hypertensive African Americans and whites: the HyperGEN study. Hypertension Genetic Epidemiology Network. Am J Hypertens. 2001;14:1226-1230. https://doi.org/10.1016/S0895-7061(01)02200-2
  69. Chien KL, Hsu HC, Su TC, Chen MF, Lee YT. Heritability and major gene effects on left ventricular mass in the Chinese population: a family study. BMC Cardiovasc Disord. 2006;6:37. https://doi.org/10.1186/1471-2261-6-37
  70. Peterson VR, Norton GR, Redelinghuys M, Libhaber CD, Maseko MJ, Majane OH, Brooksbank R, Woodiwiss AJ. Intrafamilial aggregation and heritability of left ventricular geometric remodeling is independent of cardiac mass in families of African ancestry. Am J Hypertens. 2015;28:657-663. https://doi.org/10.1093/ajh/hpu202
  71. Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7:781-791. https://doi.org/10.1038/nrg1916
  72. Arnett DK, Li N, Tang W, Rao DC, Devereux RB, Claas SA, Kraemer R, Broeckel U. Genome-wide association study identifies single-nucleotide polymorphism in KCNB1 associated with left ventricular mass in humans: the HyperGEN Study. BMC Med Genet. 2009;10:43. https://doi.org/10.1186/1471-2350-10-43
  73. Tang W, Arnett DK, Devereux RB, Panagiotou D, Province MA, Miller MB, de Simone G, Gu C, Ferrell RE. Identification of a novel 5-base pair deletion in calcineurin B (PPP3R1) promoter region and its association with left ventricular hypertrophy. Am Heart J. 2005;150:845-851. https://doi.org/10.1016/j.ahj.2004.12.004
  74. Wang L, Beecham A, Di Tullio MR, Slifer S, Blanton SH, Rundek T, Sacco RL. Novel quantitative trait locus is mapped to chromosome 12p11 for left ventricular mass in Dominican families: the Family Study of Stroke Risk and Carotid Atherosclerosis. BMC Med Genet. 2009;10:74. https://doi.org/10.1186/1471-2350-10-74
  75. Parsa A, Chang YP, Kelly RJ, Corretti MC, Ryan KA, Robinson SW, Gottlieb SS, Kardia SL, Shuldiner AR, Liggett SB. Hypertrophyassociated polymorphisms ascertained in a founder cohort applied to heart failure risk and mortality. Clin Transl Sci. 2011;4:17-23. https://doi.org/10.1111/j.1752-8062.2010.00251.x
  76. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacob DR Jr, Kronmal R, Liu K, Nelson JC, O'Leary D, Saad MF, Shea S, Szklo M, Tracy RP. Multi-Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol. 2002;156:871-881. https://doi.org/10.1093/aje/kwf113
  77. Rankinen T, An P, Perusse L, Rice T, Chagnon YC, Gagnon J, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C. Genome-wide linkage scan for exercise stroke volume and cardiac output in the HERITAGE Family Study. Physiol Genomics. 2002;10:57-62. https://doi.org/10.1152/physiolgenomics.00043.2002
  78. Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab. 2017;25:1012-1026. https://doi.org/10.1016/j.cmet.2017.04.025
  79. Eynon N, Ruiz JR, Oliveira J, Duarte JA, Birk R, Lucia A. Genes and elite athletes: a roadmap for future research. J Physiol (Lond). 2011;589(Pt 13):3063-3070. https://doi.org/10.1113/jphysiol.2011.207035
  80. Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and healthrelated fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc. 2009;41:35-73.
  81. Bouchard C, Sarzynski MA, Rice TK, Kraus WE, Church TS, Sung YJ, Rao DC, Rankinen T. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J Appl Physiol. 2011;110:1160-1170. https://doi.org/10.1152/japplphysiol.00973.2010
  82. Kagamimori S, Robson JM, Heywood C, Cotes JE. Genetic and environmental determinants of the cardio-respiratory response to submaximal exercise--a six-year follow-up study of twins. Ann Hum Biol. 1984;11:29-38. https://doi.org/10.1080/03014468400006861
  83. Mutikainen S, Perhonen M, Alen M, Leskinen T, Karjalainen J, Rantanen T, Kaprio J, Kujala UM. Effects of long-term physical activity on cardiac structure and function: a twin study. J Sports Sci Med. 2009;8:533-542.
  84. Wilmore JH, Stanforth PR, Gagnon J, Rice T, Mandel S, Leon AS, Rao DC, Skinner JS, Bouchard C. Cardiac output and stroke volume changes with endurance training: the HERITAGE Family Study. Med Sci Sports Exerc. 2001;33:99-106.
  85. Argyropoulos G, Stutz AM, Ilnytska O, Rice T, Teran-Garcia M, Rao DC, Bouchard C, Rankinen T. KIF5B gene sequence variation and response of cardiac stroke volume to regular exercise. Physiol Genomics. 2009;36:79-88. https://doi.org/10.1152/physiolgenomics.00003.2008
  86. Rankinen T, Rice T, Boudreau A, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C. Titin is a candidate gene for stroke volume response to endurance training: the HERITAGE Family Study. Physiol Genomics. 2003;15:27-33. https://doi.org/10.1152/physiolgenomics.00147.2002