DOI QR코드

DOI QR Code

Simplified approach to estimate the lateral torsional buckling of GFRP channel beams

  • Kasiviswanathan, M. (Department of Civil Engineering, Sona College of Technology) ;
  • Anbarasu, M. (Department of Civil Engineering, Government College of Engineering)
  • Received : 2020.03.24
  • Accepted : 2020.11.21
  • Published : 2021.02.25

Abstract

The present study investigates the lateral torsional buckling behaviour of pultruded glass fiber reinforced polymer (GFRP) simply supported channel beams subjected to uniform bending about their major axis. A parametric study by varying the sectional geometry and span of channel beams is carried out by using ABAQUS software. The accuracy of the FE models was ensured by verifying them against the available results provided in the literature. The effect of geometric nonlinearity, geometric imperfections, and the dependency of finite element mesh on the lateral torsional buckling were carefully considered in the FE model. Lateral torsional buckling (LTB) strengths obtained from the numerical study were compared with the theoretical LTB strengths obtained based on the Eurocode 3 approach for steel sections. The comparison between the numerical strengths and the design procedure proposed in the literature based on Eurocode 3 approach revealed disagreements. Therefore, a simplified improved design procedure is proposed for the safe design strength prediction of pultruded GFRP channel beams. The proposed equation has been provided that might aid the structural engineers in economically designing the pultruded GFRP channel beams in the future.

Keywords

References

  1. ABAQUS (2011), Standard User's Manual, Hibbitt, K.a.S., Inc., Vol. 1, 2 and 3, Version 6.11-1, USA.
  2. Allam, O., Draiche, K., Bousahla, A.A, Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, 26(2), 185-201. http://dx.doi.org/10.12989/cac.2020.26.2.185.
  3. Anbarasu, M. and Dar, M.A. (2020), "Improved design procedure for battened cold-formed steel built-up columns composed of lipped angles", J. Constr. Steel Resear., 164, 105781. https//doi.org/10.1016/j.jcsr.2019.105781.
  4. Ascione, L., Caron, J.F. and Godonou, P. (2016), "Prospect for new guidance in the design of FRP", European Commission Joint Research Centre - Institute for the Protection and Security of Citizen 2016, EUR 27666 EN.
  5. Bank, L.C., Gentry, T.R. and Nadipelli, M. (1996), "Local buckling of pultruded FRP beams-Analysis and design", J. Reinf. Plast. Compos., 15, 283-294. https://doi.org/10.1177/073168449601500304.
  6. Bas, S. (2019), "Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection", Steel Compos. Struct., 30(5), 483-492. https://doi.org/10.12989/scs.2019.30.5.483.
  7. Bebiano, R., Silvestre, N. and Camotim, D. (2008), "GBTUL - A code for the buckling analysis of cold-formed steel members", 19th Int. Spec. Conf. Recent Res Dev Cold-Formed Steel Des Constr., 61-79.
  8. Bedford Reinforced Plastics (2012), Design guide. Bedford, Bedford Reinforced Plastics, PA.
  9. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  10. Brooks, R.J. and Turvey, G.J. (1995), "Lateral buckling of pultruded GRP I-section cantilevers", Compos. Struct., 32, 203-215. https://doi.org/10.1016/0263-8223(95)00018-6.
  11. BSI (British Standards Institution) (2002), Reinforced Plastics Specifications for Pultruded Profiles: The European standard, BS EN 13706. London, BSI.
  12. Cardoso, D.C.T., Harries, K.A. and Batista, E.d.M. (2015), "Compressive local buckling of pultruded GFRP I-sections: development and numerical/experimental evaluation of an explicit equation", J. Compos. Constr., 19(2), 04014042. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000501.
  13. Cardoso, D.C.T., Harries, K.A. and Batista, E.M. (2014), "Closed-form equations for compressive local buckling of pultruded thin-walled sections", Thin Wall. Struct., 79, 16-22. https://doi.org/10.1016/j.tws.2014.01.013.
  14. Dar, M.A., Subramanian, M., Anbarasu, M., Dar, A.R and Lim, J.B.P. (2018), "Structural performance of cold-formed steel composite beams", Steel Compos. Struct., 27(5), 545-554. https://doi.org/10.12989/scs.2018.27.5.545.
  15. Davalos, J.F., Qiao, P.Z. and Salim, H.A. (1997), "Flexural-torsional buckling of pultruded fiber reinforced plastic composite I-beams: experimental and analytical evaluations", Compos. Struct., 38(1-4), 241-250. https://doi.org/10.1016/S0263-8223(97)00059-7.
  16. Devi, S.V., Singh, T.G. and Singh, K.D. (2019), "Cold-formed steel square hollow members with circular perforations subjected to torsion", J. Constr. Steel Resear., 162, 105730. https://doi.org/10.1016/j.jcsr.2019.105730.
  17. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Struct., 24(2), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  18. Fibergrate Composite Structures (2011), Design Guide, Dynaform FRP Structural Shapes, Fibergrate Composite Structures, Dallas.
  19. Fiberline (2003), Design Manual. Kolding, Fiberline, Denmark.
  20. Ipe, T.V., Bai, H.S., Vani, K.M. and Iqbal, M.M.Z. (2013), "Flexural behaviour of cold-formed steel-concrete composite beams", Steel Compos. Struct., 14(2), 105-120. https://doi.org/10.12989/scs.2013.14.2.105.
  21. Johnson, E.T. and Shield, C.K. (1998), "Lateral-torsional buckling of composite beams", Proceedings of The Second International Conference on Composites in Infrastructure (ICCI'98), Tucson, Arizona, 275-288.
  22. Kankanamge, N.D. and Mahendran, M. (2012), "Behaviour and design of cold-formed steel beams subject to lateral-torsional buckling", Thin Wall. Struct., 51, 25-38. https://doi.org/10.1016/j.tws.2012.05.009.
  23. Kasiviswanathan, M. and Upadhyay, A. (2018), "Flange buckling behavior of FRP box-beams: A parametric study", J. Reinf. Plast. Compos., 37(2), 105-117. https://doi.org/10.1177/0731684417736142.
  24. Kollar, L.P. (2003), "Local buckling of fiber reinforced plastic composite structural members with open and closed cross sections", J. Struct. Eng., 129, 1503-1513. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:11(1503).
  25. Lee, S. (2001), "Flexural-torsional buckling of pultruded T-sections", PhD, Georgia Institute of Technology.
  26. Mangalgiri, P.D. (1999), "Composite materials for aerospace applications", Bull. Mater. Sci., 22(3), 657-664. https://doi.org/10.1007/BF02749982.
  27. Mottram, J.T. (1992), "Lateral-torsional buckling of a pultruded I-beam", Compos., 23(2), 81-92. https://doi.org/10.1016/0010-4361(92)90108-7.
  28. Muttashar, M., Karunasena, W., Manalo, A. and Lokuge, W. (2015), "Behaviour of hollow pultruded GFRP square beams with different shear span-to-depth ratios", J. Compos. Mater., 50(21), 2925-2940. https://doi.org/10.1177/0021998315614993.
  29. National Research Council of Italy (CNR) (2008), "Guide for the design and construction of structures made of thin FRP pultruded elements", CNR-DT 205/2007, Rome, Italy.
  30. Nguyen, T.T., Chan, T.M. and Mottram, J.T. (2013), "Influence of boundary conditions and geometric imperfections on lateral-torsional buckling resistance of a pultruded FRP I-beam by FEA", Compos. Struct., 100, 233-242. https://doi.org/10.1016/j.compstruct.2012.12.023.
  31. Nguyen, T.T., Chan, T.M. and Mottram, J.T. (2014), "Lateral-torsional buckling resistance by testing for pultruded FRP beams under different loading and displacement boundary conditions", Compos. Part B: Eng., 60, 306-318. https://doi.org/10.1016/j.compositesb.2013.12.025.
  32. Nguyen, T.T., Chan, T.M. and Mottram, J.T. (2015), "Lateral-torsional buckling design for pultruded FRP beams", Compos. Struct., 133, 782-793. https://doi.org/10.1016/j.compstruct.2015.07.079.
  33. Pajand, M.R., Masoodi, A.R. and Alepaighambar, A. (2018), "Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing", Steel Compos. Struct., 28(4), 403-414. https://doi.org/10.12989/scs.2018.28.4.403.
  34. Qiao, P. and Shan, L. (2005), "Explicit local buckling analysis and design of fiber-reinforced plastic composite structural shapes", Compos. Struct., 70(4), 468-483. https://doi.org/10.1016/j.compstruct.2004.09.005.
  35. Qiao, P.Z., Zou, G. and Davalos, J.F. (2003), "Flexural-torsional buckling of fiber reinforced plastic composite cantilever I-beams", Compos. Struct., 60(2), 205-217. https://doi.org/10.1016/S0263-8223(97)00059-7.
  36. Ranganathan, S. and Mantena, R. (2003), "Axial loading and buckling response characteristics of pultruded hybrid glass-graphite/epoxy composite beams", J. Reinf. Plast. Compos., 22(7), 671-679. https://doi.org/10.1177/073168403024566.
  37. Razzaq, Z., Prabhakaran, R. and Sirjani, M.M. (1996), "Load and resistance factor design (LRFD) approach for reinforced-plastic channel beam buckling", Compos. Part B: Eng., 27(3), 361-369. https://doi.org/10.1016/1359-8368(95)00025-9.
  38. Regel, F., Hattum, F.W.V. and Dias, G.R. (2012), "A numerical and experimental study of the material properties determining the crushing behaviour of pultruded GFRP profiles under lateral compression", J. Compos. Mater., 47(4), 1749-1764. https://doi.org/10.1177/0021998312451297.
  39. Russo, S. (2015), "Buckling interactions in columns made by built-up thin, open, pultruded FRP shapes", J. Reinf. Plast. Compos., 34, 972-988. https://doi.org/10.1177/0731684415584953.
  40. Russo, S. (2016), "First investigation on mixed cracks and failure modes in multi-bolted FRP plates", Compos. Struct., 154, 17-30. https://doi.org/10.1016/j.compstruct.2016.07.016.
  41. Russo, S. (2017), "A review on buckling collapses of simple and complex columns made from pultruded FRP material", Compos. Mech. Comput. Appl., 8, 1-34. https://doi.org/10.1615/CompMechComputApplIntJ.v8.i1.10.
  42. Sapkas, A. and Kollar, L.P. (2002), "Lateral-torsional buckling of composite beams", Int. J. Solid. Struct., 39, 2939-2963. https://doi.org/10.1061/40616(281)10.
  43. Serror, M.H., Soliman, E.G. and Hassan A.F. (2017), "Numerical study on the rotation capacity of CFRP strengthened cold formed steel beams", Steel Compos. Struct., 23(4), 385-397. https://doi.org/10.12989/scs.2017.23.4.387.
  44. Shahabi, R. and Narmashiri, K. (2018), "Effects of deficiency location on CFRP strengthening of steel CHS short columns", Steel Compos. Struct., 28(3), 267-278. https://doi.org/10.12989/scs.2018.28.3.267.
  45. Southwell, R.V. (1932), "On the analysis of experimental observations in problems of elastic stability", Proceedings of the Royal Society of London. Series A, 135, 601-616. https://doi.org/10.1098/rspa.1932.0055.
  46. Szalai, J. and Papp, F. (2010), "On the theoretical background of the generalization of Ayrton-Perry type resistance formulas", J. Constr. Steel Resear., 66, 670-679. https://doi.org/10.1016/j.jcsr.2009.12.013.
  47. Szymczak, C. and Kubiak, T. (2018), "Local buckling of composite channel columns", Continuum. Mech. Thermodyn., 32(3), 555-567. https://doi.org/10.1007/s00161-018-0674-2.
  48. Szymczak, C. and Kujawa, M. (2019), "Sensitivity analysis of free torsional vibration frequencies of thin-walled laminated beams under axial load", Continum. Mech. Thermodyn., 1-10. https://doi.org/10.1007/s00161-019-00847-2.
  49. Thompson, R.H., Joseph, P. and Delfino, A. (2014), "Theoretical and experimental compressive strength of a glass fiber-vinyl ester pultruded composite", J. Compos. Mater., 49(6), 739-748. https://doi.org/10.1177/0021998314525651.
  50. Thumrongvut, J. and Seangatith, S. (2011), "Experimental study on lateral-torsional buckling of PFRP cantilevered channel beams", The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction. Procedia Engineering, 14, 2438-2445.
  51. TreadWell Composites (2017), Structural Product Guide, TreadWell Group, Adelaide, SA, Australia.
  52. Trumpf, H. (2006), "Local and global stability of plane frame works made of orthotropic FRP-profiles", Ph.D. Thesis, University of Aachen, Germany, Shaker-Verlag.
  53. Turvey, G.J. (1996), "Lateral buckling tests on rectangular cross-section pultruded GRP cantilever beams", Compos. Part B: Eng., 27(1), 35-42. https://doi.org/10.1016/1359-8368(95)00004-6.
  54. Zangenberg, J., Brondsted, P. and Koefoed, M. (2014), "Design of a fibrous composite preform for wind turbine rotor blades", Mater. Des., 56, 635-641. https://doi.org/10.1016/j.matdes.2013.11.036.
  55. Zureick, A.H., Bennett, R.M. and Ellingwood, B.R. (2006), "Statistical characterization of FRP composite material properties for structural design", J. Struct. Eng., 132(8), 1320-1327. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:8(1320).