DOI QR코드

DOI QR Code

Numerical Analysis of the Sessile Droplet Evaporation on Heated Surfaces

가열된 표면에 고착된 액적의 증발 특성에 관한 수치해석 연구

  • 정찬호 (중앙대학교 기계공학과) ;
  • 이형주 (중앙대학교 기계공학과) ;
  • 윤국현 (중앙대학교 기계공학과) ;
  • 이성혁 (중앙대학교 기계공학부)
  • Received : 2020.08.18
  • Accepted : 2020.09.25
  • Published : 2021.03.31

Abstract

Droplet evaporation has been known as a common phenomenon in daily life, and it has been widely used for many applications. In particular, the influence of the different heated substrates on evaporation flux and flow characteristics is essential in understanding heat and mass transfer of evaporating droplets. This study aims to simulate the droplet evaporation process by considering variation of thermal property depending on the substrates and the surface temperature. The commercial program of ANSYS Fluent (V.17.2) is used for simulating the conjugated heat transfer in the solid-liquid-vapor domains. Moreover, we adopt the diffusion-limited model to predict the evaporation flux on the different heated substrates. It is found that the evaporation rate significantly changes with the increase in substrate temperature. The evaporation rate substantially varies with different substrates because of variation of thermal property. Also, the droplet evaporates more rapidly as the surface temperature increases owing to an increase in saturation vapor pressure as well as the free convection effect caused by the density gradient.

Keywords

References

  1. D. Y. Zang, S. Tarafdar, Y. Y. Tarasevich, M. D. Choudhury, and T. Dutta, "Evaporation of a droplet: from physics to applications", Phys Rep, Vol. 804, 2019, pp. 1-56. https://doi.org/10.1016/j.physrep.2019.01.008
  2. D. Brutin and V. Starov, "Recent advances in droplet wetting and evaporation", Chem Soc Rev, Vol. 47, 2018, pp. 558-585. https://doi.org/10.1039/C6CS00902F
  3. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, "Contact line deposits in an evaporating drop", Phys Rev E, Vol. 62, 2000, pp. 756-765. https://doi.org/10.1103/PhysRevE.62.756
  4. W. Bou-Zeid and D. Brutin, "Effect of relative humidity on the spreading dynamics of sessile drops of blood", Colloid Surface A, Vol. 456, 2014, pp. 273-285. https://doi.org/10.1016/j.colsurfa.2014.05.004
  5. J. H. Moon, S. M. Lee, C. K. Choi, and S. H. Lee, "Modeling of the evaporation rate of liquid droplets on anodized heated surfaces", Int Commun Heat Mass, Vol. 98, 2018, pp. 209-215. https://doi.org/10.1016/j.icheatmasstransfer.2018.09.005
  6. B. Sobac and D. Brutin, "Thermal effects of the substrate on water droplet evaporation", Phys Rev E, Vol. 86, 2012.
  7. F. Carle, B. Sobac, and D. Brutin, "Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation", Appl Phys Lett, Vol. 102, 2013.
  8. P. L. Kelly-Zion, C. J. Pursell, N. Hasbamrer, B. Cardozo, K. Gaughan, and K. Nickels, "Vapor distribution above an evaporating sessile drop", Int J Heat Mass Tran, Vol. 65, 2013, pp. 165-172. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.003
  9. P. L. Kelly-Zion, C. J. Pursell, S. Vaidya, and J. Batra, "Evaporation of sessile drops under combined diffusion and natural convection", Colloid Surface A, Vol. 381, 2011, pp. 31-36. https://doi.org/10.1016/j.colsurfa.2011.03.020
  10. G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, "The strong influence of substrate conductivity on droplet evaporation", J Fluid Mech, Vol. 623, 2009, pp. 329-351. https://doi.org/10.1017/S0022112008005004
  11. H. Hu and R. G. Larson, "Evaporation of a sessile droplet on a substrate", J Phys Chem B, Vol. 106, 2002, pp. 1334-1344. https://doi.org/10.1021/jp0118322
  12. Z. H. Pan, J. A. Weibel, and S. V. Garimella, "Transport mechanisms during water droplet evaporation on heated substrates of different wettability", Int J Heat Mass Tran, Vol. 152, 2020.