References
- Achenbach, M., Lahmer, T. and Morgenthal, G. (2017), "Identification of the thermal properties of concrete for the temperature calculation of concrete slabs and columns subjected to a standard fire-methodology and proposal for simplified formulations", Fire Saf. J., 87, 80-86. https://doi.org/10.1016/j.firesaf.2016.12.003.
- Allam, S.M., Elbakry, H.M.F. and Rabeai, A.G. (2013), "Behavior of one-way reinforced concrete slabs subjected to fire", Alex. Eng. J., 52(4), 749-761. https://doi.org/10.1016/j.aej.2013.09.004.
- Bailey, C.G. (2004), "Membrane action of slab/beam composite floor systems in fire", Eng. Struct., 26(12), 1691-1703. https://doi.org/10.1016/j.engstruct.2004.06.006.
- Banerjee, D.K. (2016), "An analytical approach for estimating uncertainty in measured temperatures of concrete slab during fire", Fire Saf. J., 82, 30-36. https://doi.org/10.1016/j.firesaf.2016.03.005.
- Chen, L.G. (2004), "The experimental research of reinforced concrete slab", Ph.D. Dissertation, Xi'an University of Architecture and Technology, Xi'an, China. (in Chinese)
- Ding, F.X. and Yu, Z.W. (2006), "Behavior of concrete and circular concrete-filled steel tube columns at constant high temperatures", J. Cent. South Univ., 13(6), 726-732. https://doi.org/10.1007/s11771-006-0022-8.
- Ding, F.X., Li, Z., Cheng, S.S. and Yu, Z.W. (2018), "Stress redistribution of simply supported reinforced concrete beams under fire conditions", J. Cent. South Univ., 25(9), 2093-2106. https://doi.org/10.1007/s11771-018-3899-0.
- Dwaikat, M.B. and Kodur, V.K.R. (2009), "Hydrothermal model for predicting fire-induced spalling in concrete structural systems", Fire Saf. J., 44(3), 425-434. https://doi.org/10.1016/j.firesaf.2008.09.001.
- Dzolev, I., Cvetkovska, M., Ladjinovic, D. and Radonjanin, V. (2018), "Numerical analysis on the behavior of reinforced concrete frame structures in fire", Comput Concrete, 21(6), 637-647. http://doi.org/10.12989/cac.2018.21.6.637.
- Ellobody, E. and Bailey, C.G. (2009), "Modelling of unbonded post-tensioned concrete slabs under fire conditions", Fire Saf. J., 44(2), 159-167. https://doi.org/10.1016/j.firesaf.2008.05.007.
- Erdem, H. (2017), "Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks", Comput Concrete, 19(6), 711-716. http://doi.org/10.12989/cac.2017.19.6.711.
- Eurocode 2 (2004), Design of Concrete Structures-Part 1.2: General Rules-Structural Fire Design, BS EN1992-1-2, British Standard Institution, London, UK.
- Eurocode 3 (2005), Design of Steel Structures-Part 1.2: General Rules-Structural Fire Design, BS EN 1993-1-2, British Standard Institution, London, UK.
- Eurocode 4 (2005), Design of Composite Steel and Concrete Structures-Part 1.2: General Rules-Structural Fire Design, BS EN 1994-1-2, British Standard Institution, London, UK.
- Gawin, D., Pesavento, F. and Castells, A.G. (2018), "On reliable predicting risk and nature of thermal spalling in heated concrete", Arch. Civil Mech. Eng., 18(4), 1219-1227. https://doi.org/10.1016/j.acme.2018.01.013.
- GB/T 50152-2012 (2012), Standard for Test Method of Concrete Structures, China Architecture & Building Press, Beijing, China.
- Guo, Z.H. and Shi, X.D. (2011), Experiment and Calculation of Reinforced Concrete at Elevated Temperature, Tsinghua University Press, Beijing, China.
- Han, L.H., Xu, L and Zhao, X.L. (2003), "Tests and analysis on the temperature field within concrete filled steel tubes with or without protection subjected to a standard fire", Adv. Struct. Eng., 6(2), 121-133. https://doi.org/10.1260/136943303769013219.
- Ibrahimbegovic, A., Boulkertous, A., Davenne, L., Muhasilovic, M. and Pokrklic, A. (2010), "On modeling of fire resistance tests on concrete and reinforced-concrete structures", Comput Concrete, 7(4), 285-301. https://doi.org/10.12989/cac.2010.7.4.285.
- ISO 834-1 (1999), Fire-Resistance Tests-Elements of Buildings Construction-Part 1: General Requirements, Switzerland.
- Kudryashov, V., Kien, N.T. and Lupandin, A. (2012), "Fire resistance evaluation of reinforced concrete structures", Saf. Technogen. Environ., 3, 45-49.
- Lee, D.H., Cheon, N.R., Kim, M., Lee, J. and Kim, K.S. (2017), "Simplified P-M interaction curve model for reinforced concrete columns exposed to standard fire", Comput Concrete, 19(5), 545-553. http://doi.org/10.12989/cac.2017.19.5.547.
- Li, Y.Q., Ma, D.Z. and Xu, J. (1991), Fire Design Calculation and Construction Principle of Building Structure, China Architecture & Building Press, Beijing, China. (in Chinese)
- Lie, T.T. (1994), "Fire resistance of circular steel columns filled with bar-reinforced concrete", J. Struct. Eng., 120(5), 1489-1509. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:5(1489).
- Lie, T.T. and Williams-Leir, G. (1979), "Factors affecting temperature of fire-exposed concrete slabs", Fire Mater., 3(2), 74-79. https://doi.org/10.1002/fam.810030204.
- Omer, E., Izzuddin, B.A. and Elghazouli, A.Y. (2010a), "Failure of unrestrained lightly reinforced concrete slabs under fire, Part I: Analytical models", Eng Struct., 32(9), 2631-2646. https://doi.org/10.1016/j.engstruct.2010.04.039.
- Omer, E., Izzuddin, B.A. and Elghazouli, A.Y. (2010b), "Failure of unrestrained lightly reinforced concrete slabs under fire, Part II: Verification and application", Eng Struct., 32(9), 2647-2657. https://doi.org/10.1016/j.engstruct.2010.04.035.
- Song, T.Y. and Han, L.H. (2014), "Post-fire behaviour of concrete-filled steel tubular column to axially and rotationally restrained steel beam joint", Fire Saf. J., 69, 147-163. https://doi.org/10.1016/j.firesaf.2014.05.023.
- Song, T.Y., Han, L.H. and Uy, B. (2010a), "Performance of CFST column to steel beam joints subjected to simulated fire including the cooling phase", J. Constr. Steel Res., 66, 591-604. https://doi.org/10.1016/j.jcsr.2009.12.006.
- Song, T.Y., Han, L.H. and Yu. X.Y. (2010b), "Concrete filled steel tube stub columns under combined temperature and loading", J. Constr. Steel Res., 66(3), 369-384. https://doi.org/10.1016/j.jcsr.2009.10.010.
- Sun, J.X. and Gao, W. (1994), Synthetic Fire Prevention Design of Building, Tianjin Science & Technology Translation & Publishing Cooperation, Tianjin, China. (in Chinese)
- Sutriso, W. and Wahyuni, E. (2014), "Simplification of numerical model to analyze the uniformly heated one way reinforced concrete slabs exposed by fire", Int. J. Eng Sci., 4(6), 197-201.
- Wang, Y., Dong, Y.L. and Zhou, G.C. (2013), "Nonlinear numerical modeling of two-way reinforced concrete slabs subjected to fire", Comput. Struct., 119(4), 23-36. https://doi.org/10.1016/j.compstruc.2012.12.029.
- Yang, H., Han, L.H and Wang Y.C. (2008), "Effects of heating and loading histories on post fire cooling behaviour of concrete filled steel tubular columns", J. Constr. Steel Res., 64(5), 123-134. https://doi.org/10.1016/j.jcsr.2007.09.007.
- Yang, H., Liu, F., Zhang, S. and Lv, X. (2013), "Experimental investigation of concrete-filled square hollow section columns subjected to non-uniform exposure", Eng. Struct., 48, 292-312. https://doi.org/10.1016/j.engstruct.2012.09.011.
- Zhang, D.S. and Dong, Y.L. (2011), "Experimental behavior of one-way concrete slabs at large displacements", Appl. Mech. Mater., 105-107, 1035-1039. https://doi.org/10.4028/www.scientific.net/AMM.105-107.1035.
- Zhang, D.S. and Dong, Y.L. (2012), "Theoretical model for limit load-carrying capacity of one-way concrete slabs at large displacements", Adv. Inform. Sci. Serv. Sci., 4(10), 235-243. https://doi.org/10.4156/AISS.vol4.issue10.28.