References
- Angst, U., Elsener, B., Larsen, C.K. and Vennesland, O. (2011), "Chloride induced reinforcement corrosion: Rate limiting step of early pitting corrosion", Electrochim. Acta, 56(17), 5877-5889. https://doi.org/10.1016/j.electacta.2011.04.124.
- Bentz, D.P., Garboczi, E.J., Lu, Y., Martys, N., Sakulich, A.R. and Weiss, W.J. (2013), "Modeling of the influence of transverse cracking on chloride penetration into concrete", Cement Concrete Compos., 38, 65-74. https://doi.org/10.1016/j.cemconcomp.2013.03.003.
- Cao, C. (2014), "3D simulation of localized steel corrosion in chloride contaminated reinforced concrete", Constr. Build. Mater., 72, 434-443. https://doi.org/10.1016/j.conbuildmat.2014.09.030.
- Cao, C. and Cheung, M.S. (2014), "Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures", Constr. Build. Mater., 51, 75-81. https://doi.org/10.1016/j.conbuildmat.2013.10.042.
- Cao, C., Cheung M.S. and Chan B.Y. (2012), "Modelling of interaction between corrosion-induced concrete cover crack and steel corrosion rate", Corros. Sci., 69, 97-109. https://doi.org/10.1016/j.corsci.2012.11.028.
- Cheung, M.M.S. and Cao, C. (2013), "Application of cathodic protection for controlling macro-cell corrosion in chloride contaminated RC structures", Constr. Build. Mater., 45, 199-207. https://doi.org/10.1016/j.conbuildmat.2013.04.010.
- Elmoaty, A.E.M.A. (2018), "Four-years carbonation and chloride induced steel corrosion of sulfate-contaminated aggregates concrete", Constr. Build. Mater., 163(28), 539-556. https://doi.org/10.1016/j.conbuildmat.2017.12.128.
- Ge, J. and Isgor, O.B. (2007), "Effects of Tafel slope, exchange current density and electrode potential on the corrosion of steel in concrete", Mater. Corros., 58(8), 573-82. https://doi.org/10.1002/maco.200604043.
- Gerengi, H., Kocak, Y., Jazdzewska, A. and Kurtay, M. (2017), "Corrosion behavior of concrete produced with diatomite and zeolite exposed to chlorides", Comput. Concrete, 19(2), 161-169. https://doi.org/10.12989/cac.2017.19.2.161.
- Ghods, P., Isgor, O.B. and Pour-Ghaz, M. (2007), "A practical method for calculating the corrosion rate of uniformly depassivated reinforcing bars in concrete", Mater. Corros., 58(4), 265-272. https://doi.org/10.1002/maco.200604010.
- Ghods, P., Isgor, O.B. and Pour-Ghaz, M. (2008), "Experimental verification and application of a practical corrosion model for uniformly de-passivated steel in concrete", Mater. Struct., 41(7), 1211-1223. https://doi.org/10.1617/s11527-007-9320-3.
- Greenwald, M. (2004), "Beyond benchmarking-how experiments and simulations can work together in plasma physics", Comput. Phys. Commun., 164(1), 1-8. https://doi.org/10.1016/j.cpc.2004.06.001.
- Hay, R. and Ostertag, C.P. (2019), "Influence of transverse cracks and interfacial damage on corrosion of steel in concrete with and without fiber hybridization", Corros. Sci., 153, 213-224. https://doi.org/10.1016/j.corsci.2019.03.020.
- Hornbostel, K., Angst, U.M., Elsener, B., Larsen, C.M. and Geiker, M.R. (2016), "Influence of mortar resistivity on the rate-limiting step of chloride-induced macro-cell corrosion of reinforcing steel", Corros. Sci., 110, 46-56. https://doi.org/10.1016/j.corsci.2016.04.011.
- Hornbostel, K., Larsen, C.K., Geiker, M.R. (2013), "Relationship between concrete resistivity and corrosion rate-A literature review", Cement Concrete Compos., 39, 60-72. https://doi.org/10.1016/j.cemconcomp.2013.03.019.
- Kanchanadevi, A. and Ramanjaneyulu, K. (2019), "Investigations on the behavior of corrosion damaged gravity load designed beam-column sub-assemblages under reverse cyclic loading", Earthq. Struct., 16(2), 235-251. https://doi.org/10.12989/eas.2019.16.2.235.
- Kim, C. and Kim, J. (2008), "Numerical analysis of localized steel corrosion in concrete", Constr. Build Mater., 22(6), 1129-1136. https://doi.org/10.1016/j.conbuildmat.2007.02.007.
- Kranc, S.C. and Sagues, A.A. (2001), "Detailed modeling of corrosion macro-cells on steel reinforcing in concrete", Corros. Sci., 43(7), 1355-1372. https://doi.org/10.1016/S0010-938X(00)00158-X.
- Laurens, S., Henocq, P., Rouleau, N., Deby, F., Samson, E. and Marchand, J. (2016), "Steady-state polarization response of chloride-induced macro-cell corrosion systems in steel reinforced concrete-numerical and experimental investigations", Cement Concrete Res., 79, 272-290. https://doi.org/10.1016/j.cemconres.2015.09.021.
- Liang, C., Ma, H., Pan, Y., Ma, Z., Duan, Z. and He, Z. (2019), "Chloride permeability and the caused steel corrosion in the concrete with carbonated recycled aggregate", Constr. Build Mater., 218, 506-518. https://doi.org/10.1016/j.conbuildmat.2019.05.136.
- Michel, A., Otieno, M., Stang, H. and Geiker, M.R. (2016), "Propagation of steel corrosion in concrete: Experimental and numerical investigations", Cement Concrete Compos., 70, 171-182. https://doi.org/10.1016/j.cemconcomp.2016.04.007.
- Mohammadian, A., Rashetnia, R., Lucier, G., Seracino, R. and Pour-Ghaz, M. (2019), "Numerical simulation and experimental corroboration of galvanic corrosion of mild steel in synthetic concrete pore solution", Cement Concrete Compos., 103, 263-278. https://doi.org/10.1016/j.cemconcomp.2019.04.027.
- Pang, C., Zhou, X. and Chen, A. (2019), "Numerical study of ITZ contribution on diffusion of chloride and induced rebar corrosion: A discussion of three-dimensional multiscale approach", Comput. Concrete, 23(1), 69-80. https://doi.org/10.12989/cac.2019.23.1.069.
- Pour-Ghaz, M., Isgor, O.B. and Ghods, P. (2009), "The effect of temperature on the corrosion of steel in concrete. Part 1: Simulated polarization resistance tests and model development", Corros. Sci., 51(2), 415-425. https://doi.org/10.1016/j.corsci.2008.10.034.
- Pu, Q., Yao Y., Wang, L., Shi, X., Luo, J. and Xie, Y. (2017), "The investigation of pH threshold value on the corrosion of steel reinforcement in concrete", Comput. Concrete, 19(3), 257-262. https://doi.org/10.12989/cac.2017.19.3.257.
- Redaelli, E., Bertolini, L., Peelen, W. and Polder, R. (2006), "FEM-models for the propagation period of chloride induced reinforcement corrosion", Mater. Corros., 57(8), 628-635. https://doi.org/10.1002/maco.200603995.
- Revert, A.B., Hornbostel, K., Weerdt, K.D. and Geiker, M.R. (2019), "Macro-cell corrosion in carbonated Portland and Portland-fly ash concrete-Contribution and mechanism", Cement Concrete Res., 116, 273-283. https://doi.org/10.1016/j.cemconres.2018.12.005.
- Tian, Y., Chen, C., Jin, N., Jin, X. Tian, Z., Yan, D. and Yu, W. (2019), "An investigation on the three-dimensional transport of chloride ions in concrete based on X-ray computed tomography technology", Constr. Build Mater., 221, 443-455. https://doi.org/10.1016/j.conbuildmat.2019.05.144.
- Tu, X., Li, Z., Chen, A. and Pan, Z. (2018), "A multiscale numerical simulation approach for chloride diffusion and rebar corrosion with compensation model", Comput. Concrete, 21(4), 471-484. https://doi.org/10.12989/cac.2018.21.4.471.
- Warkus, J. and Raupach, M. (2008), "Numerical modelling of macro-cells occurring during corrosion of steel in concrete", Mater. Corros., 59(2), 122-130. https://doi.org/10.1002/maco.200804164.
- Warkus, J., Brem, M. and Raupach, M. (2006), "BEM-models for the propagation period of chloride induced reinforcement corrosion", Mater. Corros., 57(8), 636-641. https://doi.org/10.1002/maco.200603995.
- Wong, P.T.W., Lai, W.W.L., Sham, J.F.C. and Poon, C. (2019), "Hybrid non-destructive evaluation methods for characterizing chloride-induced corrosion in concrete", Ndt&E Int., 107, 102123. https://doi.org/10.1016/j.ndteint.2019.05.008.
- Xia, J., Li, T., Fang, J. and Jin, W. (2019), "Numerical simulation of steel corrosion in chloride contaminated concrete", Constr. Build Mater., 228, 116745. https://doi.org/10.1016/j.conbuildmat.2019.116745.
- Xu, F., Xiao, Y., Wang, S., Li, W., Liu, W., and Du, D. (2018), "Numerical model for corrosion rate of steel reinforcement in cracked reinforced concrete structure", Constr. Build Mater., 180, 55-67. https://doi.org/10.1016/j.conbuildmat.2018.05.215.
- Yu, B., Liu, J. and Li, B. (2017), "Improved numerical model for steel reinforcement corrosion in concrete considering influences of temperature and relative humidity", Constr. Build. Mater., 142, 175-186. https://doi.org/10.1016/j.conbuildmat.2017.03.045.
- Yu, B., Yang, L., Wu, M. and Li, B. (2014), "Practical model for predicting corrosion rate of steel reinforcement in concrete structures", Constr. Build. Mater., 54, 385-401. https://doi.org/10.1016/j.conbuildmat.2013.12.046.
- Zhou, B., Gu, X., Guo, H., Zhang, W. and Huang, Q. (2018), "Polarization behavior of activated reinforcing steel bars in concrete under chloride environments", Constr. Build. Mater., 164, 877-887. https://doi.org/10.1016/j.conbuildmat.2018.01.187.