DOI QR코드

DOI QR Code

HOMOTOPY PROPERTIES OF map(ΣnℂP2, Sm)

  • Received : 2020.05.07
  • Accepted : 2020.10.16
  • Published : 2021.05.01

Abstract

For given spaces X and Y, let map(X, Y) and map*(X, Y) be the unbased and based mapping spaces from X to Y, equipped with compact-open topology respectively. Then let map(X, Y ; f) and map*(X, Y ; g) be the path component of map(X, Y) containing f and map*(X, Y) containing g, respectively. In this paper, we compute cohomotopy groups of suspended complex plane πn+mnℂP2) for m = 6, 7. Using these results, we classify path components of the spaces map(ΣnℂP2, Sm) up to homotopy equivalence. We also determine the generalized Gottlieb groups Gn(ℂP2, Sm). Finally, we compute homotopy groups of mapping spaces map(ΣnℂP2, Sm; f) for all generators [f] of [ΣnℂP2, Sm], and Gottlieb groups of mapping components containing constant map map(ΣnℂP2, Sm; *).

Keywords

References

  1. M. Arkowitz, The generalized Whitehead product, Pacific J. Math. 12 (1962), 7-23. http://projecteuclid.org/euclid.pjm/1103036701 https://doi.org/10.2140/pjm.1962.12.7
  2. J.-B. Gatsinzi, Rational Gottlieb group of function spaces of maps into an even sphere, Int. J. Algebra 6 (2012), no. 9-12, 427-432.
  3. M. Golasinski and J. Mukai, Gottlieb groups of spheres, Topology 47 (2008), no. 6, 399-430. https://doi.org/10.1016/j.top.2007.11.001
  4. D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756. https://doi.org/10.2307/2373349
  5. B. Gray, Homotopy Theory, Academic Press, New York, 1975.
  6. V. L. Hansen, Equivalence of evaluation fibrations, Invent. Math. 23 (1974), 163-171. https://doi.org/10.1007/BF01405168
  7. D. Harris, Every space is a path component space, Pacific J. Math. 91 (1980), no. 1, 95-104. http://projecteuclid.org/euclid.pjm/1102778858 https://doi.org/10.2140/pjm.1980.91.95
  8. H. Kachi, J. Mukai, T. Nozaki, Y. Sumita, and D. Tamaki, Some cohomotopy groups of suspended projective planes, Math. J. Okayama Univ. 43 (2001), 105-121.
  9. P. J. Kahn, Some function spaces of CW type, Proc. Amer. Math. Soc. 90 (1984), no. 4, 599-607. https://doi.org/10.2307/2045037
  10. G. Lupton and S. B. Smith, Gottlieb groups of function spaces, Math. Proc. Cambridge Philos. Soc. 159 (2015), no. 1, 61-77. https://doi.org/10.1017/S0305004115000201
  11. G. Lupton and S. B. Smith, Criteria for components of a function space to be homotopy equivalent, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 1, 95-106. https://doi.org/10.1017/S0305004108001175
  12. G. E. Lang, Jr., The evaluation map and EHP sequences, Pacific J. Math. 44 (1973), 201-210. http://projecteuclid.org/euclid.pjm/1102948664 https://doi.org/10.2140/pjm.1973.44.201
  13. K. Maruyama and H. Oshima, Homotopy groups of the spaces of self-maps of Lie groups, J. Math. Soc. Japan 60 (2008), no. 3, 767-792. http://projecteuclid.org/euclid.jmsj/1217884492 https://doi.org/10.2969/jmsj/06030767
  14. J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999.
  15. C. A. McGibbon, Self-maps of projective spaces, Trans. Amer. Math. Soc. 271 (1982), no. 1, 325-346. https://doi.org/10.2307/1998769
  16. J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90 (1959), 272-280. https://doi.org/10.2307/1993204
  17. J. Mukai, Note on existence of the unstable Adams map, Kyushu J. Math. 49 (1995), no. 2, 271-279. https://doi.org/10.2206/kyushujm.49.271
  18. K. Oguchi, Generators of 2-primary components of homotopy groups of spheres, unitary groups and symplectic groups, J. Fac. Sci. Univ. Tokyo Sect. I 11 (1964), 65-111 (1964).
  19. H. Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, NJ, 1962.
  20. K. Varadarajan, Generalised Gottlieb groups, J. Indian Math. Soc. (N.S.) 33 (1969), 141-164 (1970).
  21. G. W. Whitehead, On products in homotopy groups, Ann. of Math (2) 47 (1946), 460-475. https://doi.org/10.2307/1969085