DOI QR코드

DOI QR Code

하중 속도가 Smart UHPC의 자가 응력 감지 성능에 미치는 영향

Effect of Loading Rate on Self-stress Sensing Capacity of the Smart UHPC

  • 이선열 (세종대학교 건설환경공학과) ;
  • 김민경 (세종대학교 건설환경공학과) ;
  • 김동주 (세종대학교 건설환경공학과)
  • Lee, Seon Yeol (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Min Kyoung (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Dong Joo (Department of Civil and Environmental Engineering, Sejong University)
  • 투고 : 2021.01.29
  • 심사 : 2021.05.07
  • 발행 : 2021.05.31

초록

최근 지진 빈도 증가로 구조물 건전도 모니터링 (SHM: Structural Health Monitoring, 이하 SHM) 시스템에 대한 관심이 증가하고 있다. Smart concrete는 전기-역학적 거동을 바탕으로 구조물 상태를 분석할 수 있는 기술이다. 하지만 콘크리트 구조물은 지진 시 정적 변형률 또는 하중 속도 보다 10배 이상 빠른 하중 속도가 작용하나 기존 연구 대부분은 정적 하중 속도에서의 감지 능력을 주로 조사하고 있다. 본 연구는 지진과 같이 높은 하중 속도에서 자가 응력감지 능력을 평가하기 위해 만능재료시험기 (UTM: Universal Testing Machine, 이하 UTM)를 사용하여 3가지 하중 재하 속도 (1, 4, 8 mm/min) 하에서 Smart Ultra High Performance Concrete (S-UHPC)의 전기-역학적 거동을 측정하였다. S-UHPC의 최대 압축 하중에서 Stress sensitive Coefficient (SC)는 1 mm/min 하중 속도 기준 -0.140%/MPa로 측정되었으나, 하중 속도가 각각 4, 8 mm/min으로 증가함에 따라 42.8 %, 72.7% 감소하였다. 전도성 재료의 변형 감소, 미세균열 증가로 인하여 S-UHPC의 감지능력이 하중속도 증가에 따라 감소하였지만, 그럼에도 불구하고 높은 하중 속도 하에서도 우수한 감지 성능을 보여 구조물 지진 하중 감지를 위한 SHM 시스템에 활용 가능함을 확인하였다.

Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.

키워드

과제정보

이 논문은 행정안전부장관의 지진방재내진분야 전문인력 양성사업으로 지원되었습니다.

참고문헌

  1. B. Han, X.Yu, J. Ou, Self-Sensing Concrete in Smart Structures, p.385, Butterworth-Heinemann, Kidlington, 2014, pp. 189-230. DOI: https://doi.org/10.1016/C2013-0-14456-X
  2. S. Biswal, A. Ramaswamy, "Measurement of existing prestressing force in concrete structures through an embedded vibrating beam strain gauge", Measurement , Vol.83, pp.10-19, Apr. 2016. DOI: https://doi.org/10.1016/j.measurement.2016.01.031
  3. S.C. Huang, W.W. Lin, M.T. Tsai, M.H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks", Sensors and Actuators A: Physical, Vol.135, No.2, pp. 570-579, Apr. 2007. DOI: https://doi.org/10.1016/j.sna.2006.10.010
  4. S.Y. Lee, H.V. Le, D.J. Kim, "Self-stress sensing smart concrete containing fine steel slag aggregates and steel fibers under high compressive stress", Construction and Building Materials, Vol.220, pp.149-160, Sep. 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.197
  5. H.V. Le, D.H. Lee, D.J. Kim, "Effects of steel slag aggregate size and content on piezoresistive responses of smart ultra-high-performance fiber-reinforced concretes". Sensors and Actuators A, Vol.305, pp.111925, Apr. 2020. DOI: https://doi.org/10.1016/j.sna.2020.111925
  6. M.K. Kim, D.J. Kim, "Electro-mechanical response of high-performance fiber-reinforced cementitious composites containing milled glass fibers under tension". Materials, Vol.11, No.7, pp.115, Jun. 2020. DOI: https://doi.org/10.3390/ma11071115
  7. H.V. Le, D.J. Kim, "Detecting crack and damage location in self-sensing fiber reinforced cementitious composites", Construction and Building Materials, Vol.240, pp.117973, Apr. 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117973
  8. H.W. Noh, M.K. Kim, D.J. Kim, "Comparative performance of four electrodes for measuring the electro-mechanical response of self-damage detecting concrete under tensile load", Sensors, Vol.19, No.17, pp.3645. Jul. 2019. DOI: https://doi.org/10.3390/s19173645
  9. A. Kovalovs , S. Rucevskis, V. Kulakov, A. Aniskevich, "Delamination detection in carbon fibre reinforced composites using electrical resistance measurement", IOP Conf. Series: Materials Science and Engineering, Vol.111, pp.012010, 2016. DOI: http://dx.doi.org/10.1088/1757-899X/111/1/012010
  10. M.S. Konsta-gdoutos, C.A Aza, "Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures", Cement and Concrete Composites, Vol.53, pp.162-169, Oct. 2014. DOI: https://doi.org/10.1016/j.cemconcomp.2014.07.003
  11. B. Han, X. Yu, K. Zhang, E. Kwon, J. Ou, "Sensing properties of CNT-filled cement-based stress sensors", Journal of Civil Structural Health Monitoring, Vol.1, pp. 17-24, Jun. 2011. DOI: https://doi.org/10.1007/s13349-010-0001-5
  12. L. Zhang, S. Ding, L. Li, S. Dong, D. Wang, X. Yu, B. Han, "Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials", Composites Part A, Vol.109, pp.303-320, Jun. 2018. DOI:https://doi.org/10.1016/j.compositesa.2018.03.020
  13. S. Sun, B. Han, S. Jiang, X. Yu, Y. Wang, H. Li, J. Ou, "Nano graphite platelets-enabled piezoresistive cementitious composites for structural health monitoring", Construction and Building Materials, Vol.136, pp.314-328, Apr. 2017 DOI:https://doi.org/10.1016/j.conbuildmat.2017.01.006
  14. X. Li, M. Li, "Multifunctional self-sensing and ductile cementitious materials", Cement and Concrete Research , Vol.123, pp.105714, Sep. 2019. DOI: https://doi.org/10.1016/j.cemconres.2019.03.008
  15. E. Garcia-Macias, A. Downey, A. D'Alessandro, R. Castro-Triguero, S. Laflamme, F. Ubertini. "Enhanced lumped circuit model for smart nanocomposite cement-based sensors under dynamic compressive loading conditions", Sensors and Actuators A: Physical, Vol.260, pp.45-57, Jun. 2017. DOI: https://doi.org/10.1016/j.sna.2017.04.004
  16. J.K. Park, T.T Ngo, D.J. Kim, "Interfacial bond characteristics of steel fibers embedded in cementitious composites at high rates", Cement and Concrete Research , Vol.123, pp.105802, Sep. 2019. DOI: https://doi.org/10.1016/j.cemconres.2019.105802
  17. Z. Wu, C. Shi, W. He, D. Wang, "Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements", Cement and Concrete Composites Vol.79, pp.148-157, May 2017. DOI: https://doi.org/10.1016/j.cemconcomp.2017.02.010