DOI QR코드

DOI QR Code

Evaluating Joint Motion Sensing Efficiency According to the Implementation Method of CNT-Based Fabric Sensors

CNT 기반의 직물센서 구현 방법에 따른 관절동작 센싱 효율 평가

  • 조현승 (연세대학교 생활과학대학 심바이오틱라이프텍연구원) ;
  • 양진희 (연세대학교 생활과학대학 심바이오틱라이프텍연구원) ;
  • 이주현 (연세대학교 생활과학대학 의류환경학과)
  • Received : 2021.11.10
  • Accepted : 2021.11.23
  • Published : 2021.12.31

Abstract

This study aimed to determine the effects of the shape and attachment position of stretchable textile sensors coated with carbon nanotube on their performance when used to measure children's joint movements. Moreover, the child-safe requirements for fabric motion sensors are established. The child participants were advised to wear integrated clothing equipped with the sensors of various shapes (rectangular and boat-shaped) and attachment positions (at the knee and elbow joints or 4 cm below the joints). The voltage change induced by the elongation and contraction of the fabric sensors was determined for arm and leg flexion-extension motions at 60 deg/s (three measurements of 10 repeats each for 60°and 90°angles, for a total of 60 repetitions). Their dependability was determined by comparing the fabric motion sensors to the associated acceleration sensors. The experimental results indicate that the rectangular-shaped sensor affixed 4 cm below the joint is the most effective fabric motion sensor for measuring children's arm and leg motions. In this study, we designed a textile sensor capable of tracking children's joint motion and analyzed the sensor shape and attachment position on motion sensing clothing. We demonstrated that flexible fabric sensors integrated into garments may be used to detect the joint motions of the human body.

본 연구의 목적은 본 연구에서는 탄소나노튜브 기반의 신축성 직물 센서의 모양과 의복 상 부착 위치가 아동의 사지 관절 동작 센싱 성능에 미치는 영향을 분석하고, 이를 통해 아동의 사지 동작 센싱에 적합한 직물 동작 센서의 요건을 규명하고자 하였다. 실험 대상 아동에게 2종의 센서 모양과 2개의 센서 부착 위치에 따라 조작된 실험복을 착의시킨 후 60 deg/sec의 속도로, 팔과 다리의 굽힘-폄 동작(60°, 90°의 동작 각도별로 10회씩 3회 반복 동작, 총 60회 동작)에 의한 직물 센서의 신장과 수축에 따른 전압의 변화량을 측정하였으며, 가속도 센서를 함께 부착하여, 센싱 결과의 일치도를 분석함으로써 신뢰도를 검증하였다. 실험 결과 아동의 팔과 다리 동작을 가장 효율적으로 측정할 수 있는 직물 센서의 구성 요건은 장방형 모양 센서 및 관절로부터 4cm 아래 부위에 부착된 센서로 나타났다. 본 연구에서는 아동의 사지 동작 측정에 적합한 직물 센서를 개발하고 관절동작 센싱에 적합한 센서의 모양과 의복 상 부착 위치에 대한 조건을 분석하였으며, 의복에 통합된 유연한 직물 센서를 활용하여 인체 부위별 동작 센싱이 가능하다는 것을 규명하였다.

Keywords

Acknowledgement

이 논문은 2018년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2018S1A5A2A03037538).

References

  1. Adidas miCoach, Retrieved from http://www.adidas.com/kr/miCoach
  2. Cho, G. S., Jeong., K. S., Paik, M. J., & Kwun, Y. E. (2011). Performance evaluation of textile-based electrodes and motion sensors for smart clothing. Sensors Journal IEEE, 11(12), 3183-3193. DOI: 10.1109/JSEN.2011.2167508
  3. Cho, H. S., Park, S. H., Kang, D. H., Lee, K. H., Kang, S. J., Han, B. R., Oh, J. H., Lee, J. H., & Lee, J. W. (2015). Performance evaluation of fabric sensors for movement-monitoring smart clothing: Based on the experiment on a dummy. Science of Emotion & Sensibility, 18(4), 27-36. DOI: 10.14695/KJSOS.2015.18.4.25
  4. Cho, H. S., Yang, J. H., Jeon, D. J., Lee, J. H. (2017). Effect of the shape and attached position of fabric sensors on the sensing performance of limb-motion sensing clothes. Science of Emotion & Sensibility, 20(3), 141-150. DOI: 10.14695/KJSOS.2017.20.3.141
  5. Daniel, R., Henk, L., & Per, S. (2013). Xsens MVN: Full 6DOF human motion tracking using miniature inertial sensors, XSENS TECHNOLOGIES - VERSION APRIL 3, 1-9.
  6. Dunne, L. (2010). Posture-monitoring vest, Retrieved from http://faculty.design.umn.edu/dunne/past_projects/
  7. Eskofier, B. (2013). Wearable computing systems for recreational and elite sports. Wearable Technologies Conference 2013, Munich.
  8. Gioberto, G., & Dunne, L. (2014) Garment-integrated bend sensor. Electronics, 3, 564-581. DOI: 10.3390/ electronics3040564
  9. Hastings, C. (2019). Smart fabric can sense motion to help physical therapy patients to optimize recovery, Medgadget, Inc, APRIL 9TH. Retrieved from https://www.medgadget.com/2019/04/smartfabric-can-sense-motion-to-help-physical-therapy-patients-to-optimize-recovery.html
  10. Helmer, R. (2008). The wearable body-mapping sleeve, CSIRO science image. Retrieved from https://www.scienceimage.csiro.au/library/textile/i/7664/the-wearable-body-mapping-sleeve/
  11. Hofmann, C. (2012). Wearable sensors and wireless data transmission. Wearable Technologies Congress 2012, Munich.
  12. Kang, D. H., Lee, Y. J., Lee, J. W., & Lee, J. H. (2011). A study on the sleeve-shaped platform of POF-based joint angle sensor for arm movement monitoring clothing. Science of Emotion & Sensibility, 14(2), 221-226.
  13. Lorenzo, T. (2013). Wearable systems for movement recording in care support. Wearable Technologies Conference 2013, Munich.
  14. Totaro, M., Poliero, T., Mondini, A., Lucarotti, C., Cairoli, C., Ortiz, J., & Beccai, L. (2017). Soft smart garments for lower limb joint position analysis. Sensors, 17(10). DOI: 10.3390/s17102314
  15. Univ. of Harvard (2020), Arm muscle monitoring sensor, Retrieved from https://www.chosun.com/economy/science/2020/11/18/ILXXAOODRFBPDHZ4SQCFJJ3WJY/
  16. Ding, Y., Kim, M., Kuindersma, S., & Walsh, C. J. (2018). Human-in-the-loop optimization of hip assistance with a soft exosuit during walking. Science Robotics, 3(15), eaar5438. 1-8. DOI: 10.1126/scirobotics.aar5438