References
- Abbas, A., Cotsovos, D.M. and Behinaein, P. (2018), "Behaviour of steel-fibre-reinforced concrete beams under high-rate loading", Comput. Concrete, 22(3), 337-353. https://doi.org/10.12989/cac.2018.22.3.337.
- AbdelAleem, B.H., Ismail, M.K. and Hassan, A.A. (2018), "The combined effect of crumb rubber and synthetic fibers on impact resistance of self-consolidating concrete", Constr. Build. Mater., 162, 816-829. https://doi.org/10.1016/j.conbuildmat.2017.12.077.
- ACI 211.1-91 (2000), Standard Practice for Selecting Proportions for Normal, Heavyweight and Mass Concrete, ACI Manual of Concrete Practice, Part1, American Concrete Institute, MI, USA.
- Al-Azzawi, A.A., Saad, N. and Shakir, D. (2019), "Behavior of hybrid concrete beams with waste rubber", Comput. Concrete, 23(4), 245-253. https://doi.org/10.12989/cac.2019.23.4.245.
- Altun, F., Haktanir, T. and Ari, K. (2007), "Effects of steel fiber addition on mechanical properties of concrete and RC beams", Constr. Build. Mater., 21(3), 654-661. https://doi.org/10.1016/j.conbuildmat.2005.12.006.
- Amin, A. and Foster, S.J. (2016), "Predicting the flexural response of steel fibre reinforced concrete prisms using a sectional model", Cement Concrete Compos., 67, 1-11. https://doi.org/10.1016/j.cemconcomp.2015.12.007.
- Amin, A., Foster, S.J. and Kaufmann, W. (2017), "Instantaneous deflection calculation for steel fibre reinforced concrete one way members", Eng. Struct., 131, 438-445. https://doi.org/10.1016/j.engstruct.2016.10.041.
- Arioz, O. (2007), "Effects of elevated temperatures on properties of concrete", Fire Saf. J., 42(8), 516-522. https://doi.org/10.1016/j.firesaf.2007.01.003.
- Aslani, F., Nejadi, S. and Samali, B. (2014), "Long-term flexural cracking control of reinforced self-compacting concrete one way slabs with and without fibres", Comput. Concrete, 14(4), 419-443. http://dx.doi.org/10.12989/cac.2014.14.4.419.
- ASTM C128 (2015), Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM International, West Conshohocken.
- ASTM C143/C143M (2012), Standard Test Method for Slump of Hydraulic Cement Concrete, ASTM International, Philadelphia.
- ASTM C1609/C1609M (2012), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (using Beam with Third-Point Loading), ASTM International, United States.
- ASTM C39/C39M (2014), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, Philadelphia.
- Chalioris, C.E. and Panagiotopoulos, T.A. (2018), "Flexural analysis of steel fibre-reinforced concrete members", Comput. Concrete, 22(1), 11-25. https://doi.org/10.12989/cac.2018.22.1.011.
- Chan, R., Liu, X. and Galobardes, I. (2020), "Parametric study of functionally graded concretes incorporating steel fibres and recycled aggregates", Constr. Build. Mater., 242, 118186. https://doi.org/10.1016/j.conbuildmat.2020.118186.
- Choudhary, S., Chaudhary, S., Jain, A. and Gupta, R. (2020), "Valorization of waste rubber tyre fiber in functionally graded concrete", Mater. Today Pr., 32, 645-650. https://doi.org/10.1016/j.matpr.2020.03.122.
- Colombo, M., Di Prisco, M. and Felicetti, R. (2010), "Mechanical properties of steel fibre reinforced concrete exposed at high temperatures", Mater. Struct., 43(4), 475-491. https://doi.org/10.1617/s11527-009-9504-0.
- Dashti, J. and Nematzadeh, M. (2020), "Flexural behavior of GFRP bar-reinforced calcium aluminate cement concrete beams containing forta-ferro fibers in acidic environment", Constr. Build. Mater., 265, 120602. https://doi.org/10.1016/j.conbuildmat.2020.120602.
- Dzolev, I., Cvetkovska, M., Ladinovic, D. and Radonjanin, V. (2018), "Numerical analysis on the behaviour of reinforced concrete frame structures in fire", Comput. Concrete, 21(6), 637-647. https://doi.org/10.12989/cac.2018.21.6.637.
- Eisa, A.S., Elshazli, M.T. and Nawar, M.T. (2020), "Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams", Constr. Build. Mater., 252, 119078. https://doi.org/10.1016/j.conbuildmat.2020.119078.
- Fakoor, M. and Nematzadeh, M. (2021), "A new post-peak behavior assessment approach for effect of steel fibers on bond stress-slip relationship of concrete and steel bar after exposure to high temperatures", Constr. Build. Mater., 278, 122340. https://doi.org/10.1016/j.conbuildmat.2021.122340.
- Fallah-Valukolaee, S. and Nematzadeh, M. (2020), "Experimental study for determining applicable models of compressive stress-strain behavior of hybrid synthetic fiber-reinforced high-strength concrete", Eur. J. Environ. Civil Eng., 24(1), 34-59. https://doi.org/10.1080/19648189.2017.1364297.
- Gesoglu, M., Guneyisi, E., Hansu, O., Ipek, S. and Asaad, D.S. (2015), "Influence of waste rubber utilization on the fracture and steel-concrete bond strength properties of concrete", Constr. Build. Mater., 101, 1113-1121. https://doi.org/10.1016/j.conbuildmat.2015.10.030.
- Ghalehnovi, M., Karimipour, A. and de Brito, J. (2019), "Influence of steel fibres on the flexural performance of reinforced concrete beams with lap-spliced bars", Constr. Build. Mater., 229, 116853. https://doi.org/10.1016/j.conbuildmat.2019.116853.
- Ghasemi Naghibdehi, M., Naghipour, M. and Rabiee, M. (2015), "Behaviour of functionally graded reinforced-concrete beams under cyclic loading", Gradevinar, 67(05), 427-439. https://doi.org/10.14256/JCE.1124.2014.
- Han, J., Zhao, M., Chen, J. and Lan, X. (2019), "Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete", Constr. Build. Mater., 209, 577-591. https://doi.org/10.1016/j.conbuildmat.2019.03.086.
- Hasan-Ghasemi, A. and Nematzadeh, M. (2021), "Tensile and compressive behavior of self-compacting concrete incorporating PET as fine aggregate substitution after thermal exposure: Experiments and modeling", Constr. Build. Mater., 289, 123067. https://doi.org/10.1016/j.conbuildmat.2021.123067.
- Hertz, K.D. (2005), "Concrete strength for fire safety design", Mag. Concrete Res., 57(8), 445-453. https://doi.org/10.1680/macr.2005.57.8.445.
- Hosseini, S.A., Nematzadeh, M. and Chastre, C. (2021), "Prediction of shear behavior of steel fiber-reinforced rubberized concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars", Compos. Struct., 256, 113010. https://doi.org/10.1016/j.compstruct.2020.113010.
- International Organization for Standardization. (2012), Fire-Resistance Tests: Elements of Building Construction, Commentary on Test Method and Guide to the Application of the Outputs from the Fire-resistance Test, ISO834.
- Iskhakov, I. and Ribakov, Y. (2007), "A design method for two-layer beams consisting of normal and fibered high strength concrete", Mater. Des., 28(5), 1672-1677. https://doi.org/10.1016/j.matdes.2006.03.017.
- Ismail, M.K. and Hassan, A.A. (2017), "An experimental study on flexural behaviour of large-scale concrete beams incorporating crumb rubber and steel fibres", Eng. Struct., 145, 97-108. https://doi.org/10.1016/j.engstruct.2017.05.018.
- Jafarzadeh, H. and Nematzadeh, M. (2020), "Evaluation of post-heating flexural behavior of steel fiber-reinforced high-strength concrete beams reinforced with FRP bars: Experimental and analytical results", Eng. Struct., 225, 111292. https://doi.org/10.1016/j.engstruct.2020.111292.
- Karimi, A. and Nematzadeh, M. (2020), "Axial compressive performance of steel tube columns filled with steel fiber-reinforced high strength concrete containing tire aggregate after exposure to high temperatures", Eng. Struct., 219, 110608. https://doi.org/10.1016/j.engstruct.2020.110608.
- Karimi, A., Nematzadeh, M. and Mohammad-Ebrahimzadeh-Sepasgozar, S. (2020), "Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber", Comput. Concrete, 26(6), 467. https://doi.org/10.12989/cac.2020.26.6.467.
- Khalaf, J. and Huang, Z. (2019), "The bond behaviour of reinforced concrete members at elevated temperatures", Fire Saf. J., 103, 19-33. https://doi.org/10.1016/j.firesaf.2018.12.002.
- Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manage., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.
- Kim, G.J. and Kwak, H.G. (2017), "Depth-dependent evaluation of residual material properties of fire-damaged concrete", Comput. Concrete, 20(4), 503-509. http://doi.org/10.12989/cac.2017.20.4.503.
- Koksal, F., Sahin, Y., Gencel, O. and Yigit, I. (2013), "Fracture energy-based optimisation of steel fibre reinforced concretes", Eng. Fract. Mech., 107, 29-37. https://doi.org/10.1016/j.engfracmech.2013.04.018.
- Lee, J.Y., Shin, H.O., Yoo, D.Y. and Yoon, Y.S. (2018), "Structural response of steel-fiber-reinforced concrete beams under various loading rates", Eng. Struct., 156, 271-283. https://doi.org/10.1016/j.engstruct.2017.11.052.
- Liu, X., Yan, M., Galobardes, I. and Sikora, K. (2018), "Assessing the potential of functionally graded concrete using fibre reinforced and recycled aggregate concrete", Constr. Build. Mater., 171, 793-801. https://doi.org/10.1016/j.conbuildmat.2018.03.202.
- Mertol, H.C., Baran, E. and Bello, H.J. (2015), "Flexural behavior of lightly and heavily reinforced steel fiber concrete beams", Constr. Build. Mater., 98, 185-193. https://doi.org/10.1016/j.conbuildmat.2015.08.032.
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (Eds.). (1999), Functionally Graded Materials: Design, Processing and Applications, Springer Science and Business Media.
- Mohammadi, Y., Singh, S.P. and Kaushik, S.K. (2008), "Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state", Constr. Build. Mater., 22(5), 956-965. https://doi.org/10.1016/j.conbuildmat.2006.12.004.
- Mousavimehr, M. and Nematzadeh, M. (2019), "Predicting post-fire behavior of crumb rubber aggregate concrete", Constr. Build. Mater., 229, 116834. https://doi.org/10.1016/j.conbuildmat.2019.116834.
- Mousavimehr, M. and Nematzadeh, M. (2020). "Post-heating flexural behavior and durability of hybrid PET-Rubber aggregate concrete", Constr. Build. Mater., 265, 120359. https://doi.org/10.1016/j.conbuildmat.2020.120359.
- Murugan, R.B. and Chidambarathanu, N. (2017), "Investigation on the use of waste tyre crumb rubber in concrete paving blocks", Comput. Concrete, 20(3), 311. https://doi.org/10.12989/cac.2017.20.3.311.
- Naghibdehi, M.G., Sharbatdar, M.K. and Mastali, M. (2014), "Repairing reinforced concrete slabs using composite layers", Mater. Des., 58, 136-144. https://doi.org/10.1016/j.matdes.2014.02.015.
- Nataraja, M.C., Dhang, N. and Gupta, A.P. (1999), "Stress-strain curves for steel-fiber reinforced concrete under compression", Cement Concrete Compos., 21(5), 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9.
- Nematzadeh, M. and Fallah-Valukolaee, S. (2017), "Effectiveness of fibers and binders in high-strength concrete under chemical corrosion", Struct. Eng. Mech., 64(2), 243-257. http://doi.org/10.12989/sem.2017.64.2.243.
- Nematzadeh, M. and Fallah-Valukolaee, S. (2021), "Experimental and analytical investigation on structural behavior of two-layer fiber-reinforced concrete beams reinforced with steel and GFRP rebars", Constr. Build. Mater., 273, 121933. https://doi.org/10.1016/j.conbuildmat.2020.121933.
- Nematzadeh, M. and Mousavimehr, M. (2019), "Residual compressive stress-strain relationship for hybrid recycled PET-crumb rubber aggregate concrete after exposure to elevated temperatures", J. Mater. Civil Eng., 31(8), 04019136. https://doi.org/10.1061/(asce)mt.1943-5533.0002749
- Nematzadeh, M., Hasan-Nattaj, F., Gholampour, A., Sabetifar, H. and Ngo, TD. (2021a), "Strengthening of heat-damaged steel fber-reinforced concrete using CFRP composites: Experimental study and analytical modeling", Struct., 32, 1856-1870. https://doi.org/10.1016/j.istruc.2021.03.084.
- Nematzadeh, M., Karimi, A. and Fallah-Valukolaee, S. (2020), "Compressive performance of steel fiber-reinforced rubberized concrete core detached from heated CFST", Constr. Build. Mater., 239, 117832. https://doi.org/10.1016/j.conbuildmat.2019.117832.
- Nematzadeh, M., Mousavimehr, M., Shayanfar, J. and Omidalizadeh, M. (2021b), "Eccentric compressive behavior of steel fiber-reinforced RC columns strengthened with CFRP wraps: Experimental investigation and analytical modeling", Eng. Struct., 226, 111389. https://doi.org/10.1016/j.engstruct.2020.111389.
- Nematzadeh, M., Salari, A., Ghadami, J. and Naghipour, M. (2016), "Stress-strain behavior of freshly compressed concrete under axial compression with a practical equation", Constr. Build. Mater., 115, 402-423. https://doi.org/10.1016/j.conbuildmat.2016.04.045.
- Nes, L.G. and Overli, J.A. (2016), "Structural behaviour of layered beams with fibre-reinforced LWAC and normal density concrete", Mater. Struct., 49(1-2), 689-703. https://doi.org/10.1617/s11527-015-0530-9.
- Poon, C.S., Shui, Z.H. and Lam, L. (2004), "Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures", Cement Concrete Res., 34(12), 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011.
- RILEM D.R. (1985), "50-FMC committee fracture mechanics of concrete", Mater. Struct., 18(106), 285-290. https://doi.org/10.1007/BF02472917
- Roesler, J., Paulino, G., Gaedicke, C., Bordelon, A. and Park, K. (2007), "Fracture behavior of functionally graded concrete materials for rigid pavements", Tran. Res. Record, 2037(1), 40-49. https://doi.org/10.3141/2037-04.
- Samarakoon, S.S.M., Ruben, P., Pedersen, J.W. and Evangelista, L. (2019), "Mechanical performance of concrete made of steel fibers from tire waste", Case Stud. Constr. Mater., e00259. https://doi.org/10.1016/j.cscm.2019.e00259.
- Schnabl, S., Saje, M., Turk, G., and Planinc, I. (2007), "Analytical solution of two-layer beam taking into account interlayer slip and shear deformation", J. Struct. Eng., 133(6), 886-894. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(886).
- Shen, B., Hubler, M., Paulino, G.H. and Struble, L.J. (2008), "Functionally-graded fiber-reinforced cement composite: Processing, microstructure, and properties", Cement Concrete Compos., 30(8), 663-673. https://doi.org/10.1016/j.cemconcomp.2008.02.002.
- Sukontasukkul, P., Pomchiengpin, W. and Songpiriyakij, S. (2010), "Post-crack (or post-peak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature", Constr. Build. Mater., 24(10), 1967-1974. https://doi.org/10.1016/j.conbuildmat.2010.04.003.
- Tayebi, M. and Nematzadeh, M. (2021), "Effect of Hot-Compacted waste nylon fine aggregate on compressive Stress-Strain behavior of steel Fiber-Reinforced concrete after exposure to fire: Experiments and optimization", Constr. Build. Mater., 284, 122742. https://doi.org/10.1016/j.conbuildmat.2021.122742.
- Torelli, G., Fernandez, M.G. and Lees, J.M. (2020), "Functionally graded concrete: Design objectives, production techniques and analysis methods for layered and continuously graded elements", Constr. Build. Mater., 242, 118040. https://doi.org/10.1016/j.conbuildmat.2020.118040.
- Toutanji, H.A. (1996), "The use of rubber tire particles in concrete to replace mineral aggregates", Cement Concrete Compos., 18(2), 135-139. https://doi.org/10.1016/0958-9465(95)00010-0.
- Wang, J., Chen, X., Bu, J. and Guo, S. (2019), "Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs", Comput. Concrete, 24(4), 283-293. https://doi.org/10.12989/cac.2019.24.4.283.
- Wang, J., Guo, Z., Yuan, Q., Zhang, P. and Fang, H. (2020), "Effects of ages on the ITZ microstructure of crumb rubber concrete", Constr. Build. Mater., 254, 119329. https://doi.org/10.1016/j.conbuildmat.2020.119329.
- Wu, Z., Shi, C., He, W. and Wu, L. (2016), "Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete", Constr. Build. Mater., 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028.
- Xie, J., Li, J., Lu, Z., Li, Z., Fang, C., Huang, L. and Li, L. (2019), "Combination effects of rubber and silica fume on the fracture behaviour of steel-fibre recycled aggregate concrete", Constr. Build. Mater., 203, 164-173. https://doi.org/10.1016/j.conbuildmat.2019.01.094.
- Yan, H., Sun, W. and Chen, H. (1999), "The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete", Cement Concrete Res., 29(3), 423-426. https://doi.org/10.1016/S0008-8846(98)00235-X.
- Yu, K. and Lu, Z. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete", Comput. Concrete, 15(2), 199-213. https://doi.org/10.12989/cac.2015.15.2.199.
- Zhang, Q. and Ye, G. (2019), "Modelling microstructural changes of ordinary Portland cement paste at elevated temperature", Adv. Cement Res., 31(1), 26-42. https://doi.org/10.1680/jadcr.16.00145.