DOI QR코드

DOI QR Code

Small scale behavior of stone columns encased by tires

  • Lajevardi, Seyed Hamid (Department of Civil Engineering, Arak Branch, Islamic Azad University) ;
  • Enamia, Saeed (Department of Civil Engineering, Arak Branch, Islamic Azad University)
  • 투고 : 2020.02.24
  • 심사 : 2021.06.08
  • 발행 : 2021.06.10

초록

Stone columns are one of the best-suited methods of ground improvement for sites consisting of soft clays, silts and silty sands. Stone columns need to be supported against bulging failure as the main reason that reduces their bearing capacity. Disposal of scrap tires is one of the principal environmental problems around the world. Therefore, the reuse of scrap tires has grown globally. This paper investigates the behavior of stone columns encased by scrap tires which has the potential of replacing other encasements. Stone columns with diameters of 66, 80 and 92 mm which are one-tenth of original tire sizes have been tested in a large box, and the load-carrying characteristics of them are analyzed. Based on the results, by increasing the diameter of the encasement stone column, the benefit of the encasement increases. In addition, tests on the groups of stone columns with a diameter of 66 mm were carried out to investigate the presence effects of neighboring columns on the reference load. Furthermore, a comparison has been made with the results of ordinary stone columns and encased stone columns with geotextile to obtain the benefits of scrap tire columns. The bearing capacity of both single and group of stone columns encased with the scrap tire increases more than the ordinary stone columns. However, the bearing capacity of geotextile encased stone column is more than the other groups. Further, numerical analysis has been conducted to implement full-scale reinforced columns. The results illustrate that using scrap tires reduces bulging failure and increases the bearing capacity of stone columns. Accordingly, scrap tires replace the geotextile (as usual encasement) because their amount of bearing capacities are similar to each other especially in columns with larger diameters.

키워드

참고문헌

  1. Aboshi, H., Ichimoto, E., Harada, K. and Emoki, M. (1979), "The composer-A method to improve the characteristics of soft clays by inclusion of large diameter sand columns", Proceedings of the International Conference on Soil Reinforcement, Paris, France, March.
  2. Abusharar, SW. and Han, J. (2011), "Two-dimensional deep-seated slope stability analysis of embankments over stone column-improved soft clay", Eng. Geol., 120(1), 103-110. https://doi.org/10.1016/j.enggeo.2011.04.002.
  3. Ambily, A. and Gandhi, S.R. (2007), "Behavior of stone columns based on experimental and FEM analysis", J. Geotech. Geoenviron. Eng., 133(4), 405-415. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405).
  4. Barksdale, R. and Bachus, R. (1983), Design and Construction of Stone Columns, Volume II Appendixes, Federal Highway Administration, Washington D.C., U.S.A.
  5. Bazzazian Bonab, S., Lajevardi, S.H., Saba, H.R., Ghalandarzadeh, A. and Mirhosseini, S.M. (2020), "Experimental studies on single reinforced stone columns with various positions of geotextile", Innov. Infrastruct. Solut., 5, 98. https://doi.org/10.1007/s41062-020-00349-0.
  6. Bazzazian Bonab, S., Lajevardi, SH., Saba, HR. and Mirhosseini, S.M. (2021), "The novel usage of EPS geofoam as column material: A laboratory study", Int. J. Geosynth. Gr. Eng., 7, 8. https://doi.org/10.1007/s40891-020-00252-9.
  7. Bugaldian, A. and Saatcioglu, M. (2008), "The use of steel-belted automobile tires as column confinement reinforcement", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
  8. Castro, J. and Sagaseta, C. (2011), "Deformation and consolidation around encased stone columns", Geotext. Geomembranes, 3(29), 268-276. https://doi.org/10.1016/j.geotexmem.2010.12.001.
  9. Cetin, H., Fener, M. and Gunaydin, O. (2006), "Geotechnical properties of tire-cohesive clayey soil mixtures as a fill material", Eng. Geol., 88(1), 110-120. https://doi.org/10.1016/j.enggeo.2006.09.002.
  10. Chen, J.F., Li, L.Y., Xue, J.F. and Feng, S.Z. (2015), "Failure mechanism of geosynthetic-encased stone columns in soft soils under embankment", Geotext. Geomembranes, 43(5), 424-431. https://doi.org/10.1016/j.geotexmem.2015.04.016.
  11. Dash, S.K. and Bora, M.C. (2013), "Improved performance of soft clay foundations using stone columns and geocell-sand mattress", Geotext. Geomembranes, 41, 26-35. https://doi.org/10.1016/j.geotexmem.2013.09.001.
  12. Demir, A. and Sarici, T. (2017), "Bearing capacity of footing supported by geogrid encased stone columns on soft soil", Geomech. Eng., 12(3), 417-439. https://doi.org/10.12989/gae.2017.12.3.417.
  13. Edil, T. and Bosscher, P. (1994), "Engineering properties of tire-chips and soil mixtures", Geotech. Test. J., 17(4), 453-464. https://doi.org/10.1520/GTJ10306J.
  14. Foose, G., Benson, C. and Bosscher, P. (1996), "Sand reinforced with shredded waste tires", J. Geotech. Geoenviron. Eng., 122(9), 760-767. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(760).
  15. Garga, VK. and O'shaughnessy, V. (2000), "Tire-reinforced earthfill. Part 1: Construction of a test fill, performance, and retaining wall design", Can. Geotech. J., 37(1), 75-96. https://doi.org/10.1139/t99-084.
  16. Ghazavi, M. and Afshar, J.N. (2013), "Bearing capacity of geosynthetic encased stone columns", Geotext. Geomembranes, 38, 26-36. https://doi.org/10.1016/j.geotexmem.2013.04.003.
  17. Gniel, J. and Bouazza, A. (2009), "Improvement of soft soils using geogrid encased stone columns", Geotext. Geomembranes, 27(3), 167-175. https://doi.org/10.1016/j.geotexmem.2008.11.001.
  18. Hamidi, M. and Lajevardi, S.H. (2018), "Experimental study on the load-carrying capacity of single stone columns", Int. J. Geosynth. Ground Eng., 4(3), 1-10. https://doi.org/10.1007/s40891-018-0142-x.
  19. Hughes, J.M.O. and Withers, N.J. (1974), "Reinforcing of soft cohesive soils with stone columns", Ground Eng., 7(3), 42-49.
  20. Khabbazian, M., Meehan, Ch.L. and Kaliakin, V.N. (2010), "Numerical study of the effect of geosynthetic encasement on the behaviour of granular columns", Geosynth. Int., 17(3), 132-143. https://doi.org/10.1680/gein.2010.17.3.132.
  21. Lai, S. (1989), "Similitude for shaking table tests on soil-structure fluid models in 1g gravitational field", Soils Found., 29(1), 105-118. https://doi.org/10.3208/sandf1972.29.105.
  22. Lajevardi, S.H., Shamsi, H.R., Hamidi, M. and Enami, S. (2018), "Numerical and experimental studies on single stone columns", Soil Mech. Found. Eng., 55(5), 340-345. https://doi.org/10.1007/s11204-018-9546-9.
  23. Lo, S.R., Zhang, R. and Mak, J. (2010), "Geosynthetic-encased stone columns in soft clay: Numerical study", Geotext. Geomembranes, 28(3), 292-302. https://doi.org/10.1016/j.geotexmem.2009.09.015.
  24. Madhav, M. and Vitkar, P. (1978), "Strip footing on weak clay stabilized with a granular trench or pile", Can. Geotech. J., 15(4), 605-609. https://doi.org/10.1139/t78-066.
  25. Miranda, M. and Da Costa, A. (2016), "Laboratory analysis of encased stone columns", Geotext. Geomembranes, 44(3), 269-277. https://doi.org/10.1016/j.geotexmem.2015.12.001.
  26. Mohapatra, S.R., Rajagopal, K. and Sharma, J. (2016), "Direct shear tests on geosynthetic-encased granular columns", Geotext. Geomembranes, 44(3), 396-405. https://doi.org/10.1016/j.geotexmem.2016.01.002.
  27. Murugesan, S. and Rajagopal, K. (2009a), "Studies on the behaviour of single and group of geosynthetic encased stone columns", J. Geotech. Geoenviron. Eng., 136(1), 129-139. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000187.
  28. Murugesan, S. and Rajagopal, K. (2009b), "Shear load tests on stone columns with and without geosynthetic encasement", Geotech. Test. J., 32(1), 76-85. https://doi.org/10.1520/GTJ101219.
  29. Najjar, S.S., Sadek, S. and Maakaroun, T. (2010), "Effect of sand columns on the undrained load response of soft clays", J. Geotech. Geoenviron. Eng., 136(9), 1263-1277. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000328.
  30. Neel, P.R. and Navarkar, A.Sh. (2015), "The reuse of waste tire tread cylinders for confined aggregate concrete", Int. J. Emerging Technol. Adv. Eng., 5(5), 323-327.
  31. Oikonomou, N. and Mavridou, S. (2009), Sustainability of Construction Materials, Chapter 9, Woodhead Publishing, Greece, 213-238.
  32. Poh, P.S.H. and Broms, B.B. (1995), "Slope stabilization using old rubber tires and geotextiles", J. Perform. Constr. Fac., 9(1), 76-79. https://doi.org/10.1061/(ASCE)0887-3828(1995)9:1(76)
  33. Pulko, B., Majes, B. and Logar, J. (2011), "Geosynthetic-encased stone columns: Analytical calculation model", Geotext. Geomembranes, 29(1), 29-39. https://doi.org/10.1016/j.geotexmem.2010.06.005.
  34. Rezaei, M.M., Lajevardi, S.H., Saba, H., Ghalandarzadeh, A. and Zeighami, E. (2019), "Laboratory study on single stone columns reinforced with steel bars and discs", Int. J. Geosynth. Gr. Eng., 5, 0. https://doi.org/10.1007/s40891-019-0154-1.
  35. Rezaei, M.M., Lajevardi, S.H., Ghalandarzadeh, A. and Zeighami, E. (2020), "Experimental and numerical studies on load-carrying capacity of single floating aggregate piers reinforced with vertical steel bars", Amirkabir J. Civ. Eng., 52(7), 1-3. https://doi.org/10.22060/CEEJ.2019.15640.5991.
  36. Shamsi, M., Ghanbari, A. and Nazariafshar, J. (2019), "Behavior of sand columns reinforced by vertical geotextile encasement and horizontal geotextile layers", Geomech. Eng., 19(4), 329-342. https://doi.org/10.12989/gae.2019.19.4.329.
  37. Sivakumar, V., McKelvey, D., Graham, J. and Hughes, D. (2004), "Triaxial test on model sand columns in clay", Can. Geotech. J., 41(2), 299-312. https://doi.org/10.1139/t03-097.
  38. Sivakumar, V., Jeludine, D.K.N.M., Bell, A., Glyn, D.T. and Mackinnon, P. (2011), "The pressure distribution along stone columns in soft clay under consolidation and foundation loading", Geotechnique, 61(7), 613-620. https://doi.org/10.1680/geot.9.P.086.
  39. Wu, C.S. and Hong, Y.S. (2009), "Laboratory tests on geosynthetic encapsulated sand columns", Geotext. Geomembranes, 27(2), 107-120. https://doi.org/10.1016/j.geotexmem.2008.09.003.
  40. Yang, S., Lohnes, R.A. and Kjartanson, B.H. (2002), "Mechanical properties of shredded tires", Geotech. Test. J., 25(1), 44-52. https://doi.org/10.1520/GTJ11078J.
  41. Yoo, C. and Kim, S.B. (2009), "Numerical modeling of geosynthetic-encased stone column-reinforced ground", Geosynth. Int., 16(3), 116-126. https://doi.org/10.1680/gein.2009.16.3.116.
  42. Yoo, Ch. (2015), "Settlement behavior of embankment on geosynthetic-encased stone column installed soft ground-A numerical investigation", Geotext. Geomembranes, 43(6), 484-492. https://doi.org/10.1016/j.geotexmem.2015.07.014.
  43. Zhang, Z., Han, J. and Ye, G. (2014), "Numerical investigation on factors for deep-seated slope stability of stone column-supported embankments over soft clay", Eng. Geol., 168, 104-113. https://doi.org/10.1016/j.enggeo.2013.11.004.