DOI QR코드

DOI QR Code

Protective effects and mechanism of coenzyme Q10 and vitamin C on doxorubicin-induced gastric mucosal injury and effects of intestinal flora

  • Zhao, Xiaomeng (School of Chemical Engineering and Technology, Tianjin University) ;
  • Feng, Xueke (School of Chemical Engineering and Technology, Tianjin University) ;
  • Ye, Nan (School of Chemical Engineering and Technology, Tianjin University) ;
  • Wei, Panpan (School of Chemical Engineering and Technology, Tianjin University) ;
  • Zhang, Zhanwei (School of Chemical Engineering and Technology, Tianjin University) ;
  • Lu, Wenyu (School of Chemical Engineering and Technology, Tianjin University)
  • Received : 2019.10.27
  • Accepted : 2020.09.10
  • Published : 2021.07.01

Abstract

Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with different conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhibited the Dox-induced decrease and other harm effects, including the expression and of IκKβ, IκBα, NF-κB/p65 and tumor necrosis factor (TNF-α) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IκBα/NF-κB/p65/TNF-α pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.

Keywords

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 21878220).

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424. https://doi.org/10.3322/caac.21492
  2. Heart EA, Karandrea S, Liang X, Balke ME, Beringer PA, Bobczynski EM, Zayas-Bazan Burgos D, Richardson T, Gray JP. Mechanisms of doxorubicin toxicity in pancreatic β-cells. Toxicol Sci. 2016;152:395-405. https://doi.org/10.1093/toxsci/kfw096
  3. Zhao Y, Huan ML, Liu M, Cheng Y, Sun Y, Cui H, Liu DZ, Mei QB, Zhou SY. Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Sci Rep. 2016;6:35267. https://doi.org/10.1038/srep35267
  4. Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014;10:853-858. https://doi.org/10.4103/0973-1482.139267
  5. Eng MS, Kaur J, Prasmickaite L, Engesaeter BO, Weyergang A, Skarpen E, Berg K, Rosenblum MG, Maelandsmo GM, Hogset A, Ferrone S, Selbo PK. Enhanced targeting of triple-negative breast carcinoma and malignant melanoma by photochemical internalization of CSPG4-targeting immunotoxins. Photochem Photobiol Sci. 2018;17:539-551. https://doi.org/10.1039/C7PP00358G
  6. Frontinan-Rubio J, Santiago-Mora RM, Nieva-Velasco CM, Ferrin G, Martinez-Gonzalez A, Gomez MV, Moreno M, Ariza J, Lozano E, Arjona-Gutierrez J, Gil-Agudo A, De la Mata M, Pesic M, Peinado JR, Villalba JM, Perez-Romasanta L, Perez-Garcia VM, Alcain FJ, Duran-Prado M. Regulation of the oxidative balance with coenzyme Q10 sensitizes human glioblastoma cells to radiation and temozolomide. Radiother Oncol. 2018;128:236-244. https://doi.org/10.1016/j.radonc.2018.04.033
  7. Teran E, Racines-Orbe M, Toapanta J, Valdivieso L, Vega Z, Vivero S, Moya W, Chedraui P, Perez-Lopez FR. Maternal plasma and amniotic fluid coenzyme Q10 levels in preterm and term gestations: a pilot study. Arch Gynecol Obstet. 2011;283 Suppl 1:67-71. https://doi.org/10.1007/s00404-011-1894-x
  8. Bahar M, Khaghani S, Pasalar P, Paknejad M, Khorramizadeh MR, Mirmiranpour H, Nejad SG. Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model. Nutr J. 2010;9:62. https://doi.org/10.1186/1475-2891-9-62
  9. Cooney RV, Dai Q, Gao YT, Chow WH, Franke AA, Shu XO, Li H, Ji B, Cai Q, Chai W, Zheng W. Low plasma coenzyme Q(10) levels and breast cancer risk in Chinese women. Cancer Epidemiol Biomarkers Prev. 2011;20:1124-1130. https://doi.org/10.1158/1055-9965.EPI-10-1261
  10. Tafazoli A. Coenzyme Q10 in breast cancer care. Future Oncol. 2017;13:1035-1041. https://doi.org/10.2217/fon-2016-0547
  11. Lee SJ, Jeong JH, Lee IH, Lee J, Jung JH, Park HY, Lee DH, Chae YS. Effect of high-dose vitamin C combined with anti-cancer treatment on breast cancer cells. Anticancer Res. 2019;39:751-758. https://doi.org/10.21873/anticanres.13172
  12. Nagappan A, Park KI, Park HS, Kim JA, Hong GE, Kang SR, Lee DH, Kim EH, Lee WS, Won CK, Kim GS. Vitamin C induces apoptosis in AGS cells by down-regulation of 14-3-3σ via a mitochondrial dependent pathway. Food Chem. 2012;135:1920-1928. https://doi.org/10.1016/j.foodchem.2012.06.050
  13. Yang G, Yan Y, Ma Y, Yang Y. Vitamin C at high concentrations induces cytotoxicity in malignant melanoma but promotes tumor growth at low concentrations. Mol Carcinog. 2017;56:1965-1976. https://doi.org/10.1002/mc.22654
  14. Meredith AM, Dass CR. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J Pharm Pharmacol. 2016;68:729-741. https://doi.org/10.1111/jphp.12539
  15. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10:301-312. https://doi.org/10.1016/j.scr.2013.01.002
  16. Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12:86. https://doi.org/10.1186/1476-4598-12-86
  17. Sun SC, Chang JH, Jin J. Regulation of nuclear factor-κB in autoimmunity. Trends Immunol. 2013;34:282-289. https://doi.org/10.1016/j.it.2013.01.004
  18. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107:7-11. https://doi.org/10.1172/JCI11830
  19. Leung CH, Chan DS, Li YW, Fong WF, Ma DL. Hit identification of IKKβ natural product inhibitor. BMC Pharmacol Toxicol. 2013;14:3. https://doi.org/10.1186/2050-6511-14-3
  20. Patil KR, Mohapatra P, Patel HM, Goyal SN, Ojha S, Kundu CN, Patil CR. Pentacyclic triterpenoids inhibit IKKβ mediated activation of NF-κB pathway: in silico and in vitro evidences. PLoS One. 2015;10:e0125709. https://doi.org/10.1371/journal.pone.0125709
  21. Kleinbongard P, Heusch G, Schulz R. TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther. 2010;127:295-314. https://doi.org/10.1016/j.pharmthera.2010.05.002
  22. Fu ZZ, Peng Y, Cao LY, Chen YS, Li K, Fu BH. Correlations between serum IL-6 levels and radiation pneumonitis in lung cancer patients: a meta-analysis. J Clin Lab Anal. 2016;30:145-154. https://doi.org/10.1002/jcla.21828
  23. Li J, Lan T, Zhang C, Zeng C, Hou J, Yang Z, Zhang M, Liu J, Liu B. Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells. Oncotarget. 2015;6:1031-1048. https://doi.org/10.18632/oncotarget.2671
  24. Horie T, Ono K, Nishi H, Nagao K, Kinoshita M, Watanabe S, Kuwabara Y, Nakashima Y, Takanabe-Mori R, Nishi E, Hasegawa K, Kita T, Kimura T. Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc Res. 2010;87:656-664. https://doi.org/10.1093/cvr/cvq148
  25. Ma S, Li X, Dong L, Zhu J, Zhang H, Jia Y. Protective effect of Sheng-Mai Yin, a traditional Chinese preparation, against doxorubicin-induced cardiac toxicity in rats. BMC Complement Altern Med. 2016;16:61. https://doi.org/10.1186/s12906-016-1037-9
  26. Rocha ER, Smith CJ. Ferritin-like family proteins in the anaerobe Bacteroides fragilis: when an oxygen storm is coming, take your iron to the shelter. Biometals. 2013;26:577-591. https://doi.org/10.1007/s10534-013-9650-2
  27. Lee JY, Kim SH, Jeong HS, Oh SH, Kim HR, Kim YH, Lee JN, Kook JK, Kho WG, Bae IK, Shin JH. Two cases of peritonitis caused by Kocuria marina in patients undergoing continuous ambulatory peritoneal dialysis. J Clin Microbiol. 2009;47:3376-3378. https://doi.org/10.1128/JCM.00847-09
  28. Wang X, Zhang Y, Qin G, Luo W, Lin Q. A novel pathogenic bacteria (Vibrio fortis) causing enteritis in cultured seahorses, Hippo- campus erectus Perry, 1810. J Fish Dis. 2016;39:765-769. https://doi.org/10.1111/jfd.12411
  29. Guarino A, Ashkenazi S, Gendrel D, Lo Vecchio A, Shamir R, Szajewska H. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition/European Society for Pediatric Infectious Diseases evidence-based guidelines for the management of acute gastroenteritis in children in Europe: update 2014. J Pediatr Gastroenterol Nutr. 2014;59:132-152. https://doi.org/10.1097/MPG.0000000000000375