DOI QR코드

DOI QR Code

Shapes and formation mechanism of the plastic zone surrounding circular roadway under partial confining stress in deep mining

  • Guo, Xiaofei (School of Energy & Mining Engineering, China University of Mining and Technology (Beijing)) ;
  • Li, Chen (School of Energy & Mining Engineering, China University of Mining and Technology (Beijing)) ;
  • Huo, Tianhong (School of Energy & Mining Engineering, China University of Mining and Technology (Beijing))
  • Received : 2020.10.07
  • Accepted : 2021.06.14
  • Published : 2021.06.25

Abstract

To reveal the failure mechanism of roadway surrounding rock under the partial confining stress in deep mining, by means of theoretical analysis and numerical simulation, this paper studied the distribution laws of the principal stress field around the circular hole and compared the shapes of the plastic zone surrounding rock under the same conditions. The results show that: under hydrostatic stress (λ=1), the circumferential principal stress around the hole is the same everywhere, and the shape of plastic zone is circular; under low partial confining stress (1<λ<2), the rock element at the abscissa axis is most likely to be destroyed, while it is the least likely to be destroyed at the ordinate axis, resulting in the formation of an elliptical plastic zone; under high partial confining stress (λ≥2), the rock elements near the middle axis are easier to be destroyed, while the destructive force decreases gradually when it approaches the two axes, resulting in the formation of a butterfly plastic zone. The lateral stress coefficient is the main factor causing the butterfly failure of the roadway surrounding rock. And the depth is the main factor causing the large-scale failure of the roadway surrounding rock. Under the condition of deep and high partial confining stress, the roadway surrounding rock will appear large-scale and butterfly failure zone.

Keywords

Acknowledgement

The authors wish to sincerely thank various organizations for their financial support. This work was partially supported by the National Natural Science Foundation of China (Grant no. 52004289) and the National Key Research and Development Program (Grant no. 2016YFC0600708).

References

  1. Aker, E., Kuhn, D., Vavrycuk, V., Soldal, M. and Oye, V. (2014), "Experimental investigation of acoustic emissions and their moment tensors in rock during failure", Int. J. Rock Mech. Min. Sci., 70, 286-295. https://doi.org/10.1016/j.ijrmms.2014.05.003.
  2. Atsushi, S., Duncan, M., Adam, K.S., Yuzo, O. and Murat, K. (2020), "Impact of the intermediate stress component in a plastic potential function on rock mass stability around a sequentially excavated large underground cavity", Int. J. Rock Mech. Min. Sci., 127, 104223. https://doi.org/10.1016/j.ijrmms.2020.104223.
  3. Diederichs, M.S. (2018), "Early assessment of dynamic rupture hazard for rockburst risk management in deep tunnel projects", J. S. Afr. I. Min. Metall., 118(3), 193-204. https://doi.org/10.17159/2411-9717/2018/v118n3a1.
  4. Detournay, E. and John, C.M.S. (1988), "Design charts for a deep circular tunnel under non-uniform loading", Rock Mech. Rock Eng., 21(2), 119-137. https://doi.org/10.1007/BF01043117.
  5. Ding, L.J. and Liu, Y.H. (2018), "Study on deformation law of surrounding rock of super long and deep buried sandstone tunnel", Geomech. Eng., 16(1), 97-104. http://doi.org/10.12989/gae.2018.16.1.097.
  6. Fan, L. and Liu, S.M. (2019), "Fluid-dependent shear slip behaviors of coal fractures and their implications on fracture frictional strength reduction and permeability evolutions", Int. J. Coal Geol., 212, 103235. https://doi.org/10.1016/j.coal.2019.103235.
  7. Fan, W., Yu, M.H., Deng, LS., Peng, X.L. and Chen, L.W. (2013), "New strength formulae for rock surrounding a circular opening", Can. Geotech. J., 50(7), 735-743. https://doi.org/10.1139/cgj-2012-0001.
  8. Feng, G.R., Wang, P.F., Chugh, Y.P. (2018), "Stability of gate roads next to an irregular yield pillar: A case study", Rock Mech. Rock Eng., 52(8), 2741-2760. https://doi.org/10.1007/s00603-018-1533-y.
  9. Garavand, A., Stefanov, Y.P., Rebetsky, Y.L., Bakeev, R.A. and Myasnikov, A.V. (2020), "Numerical modeling of plastic deformation and failure around a wellbore in compaction and dilation modes", Int. J. Numer. Anal. Met., 44(6), 823-850. https://doi.org/10.1002/nag.3041.
  10. Guo, X.F., Ma, N.J., Zhao, X.D., Zhao, Z.Q. and Li, Y.E. (2016), "The general shapes and criterion for surrounding rock mass plastic zone of round roadway", J. China Coal Soc., 44(8), 1871-1877. https://doi.org/10.13225/j.cnki.jccs.2016.0787.
  11. Hill, R. (1950), The Mathematical Theory of Plasticity, Oxford University Press, Oxford, U.K.
  12. Jiang, L., Sainoki, A., Mitri, H.S., Ma, N.J, Liu, H.T. and Hao, Z. (2016), "Influence of fracture-induced weakening on coal mine gateroad stability", Int. J. Rock Mech. Min. Sci., 88, 307-317. https://doi.org/10.1016/j.ijrmms.2016.04.017.
  13. Kang, H., Zhang, X., Si, L., Wu, Y. and Gao, F. (2010), "In-situ stress measurements and stress distribution characteristics in underground coal mines in China", Eng. Geol., 116, 333-345. https://doi.org/345.10.1016/j.enggeo.2010.09.015.
  14. Kastner, H. (1971), Statik des Tunel und Stollenbauess, Springer, Berlin Heidelberg, Germany.
  15. Konicek, P., Soucek, K., Stas, L. and Singh, R. (2013), "Long-hole destress blasting for rockburst control during deep underground coal mining", Int. J. Rock Mech. Min. Sci., 61, 141-153. https://doi.org/10.1016/j.ijrmms.2013.02.001.
  16. Lamich, D., Marschalko, M., Yilmaz, I., Bednarova, P., Niemiec, D., Kubecka, K. and Mikulenka, V. (2016), "Subsidence measurements in roads and implementation in land use plan optimisation in areas affected by deep coal mining", Environ. Earth Sci., 75(1), 1-11. https://doi.org/10.1007/s12665-015-4933-2.
  17. Leitman, M.J. and Villaggio, P. (2009), "Plastic zone around circular holes", J. Eng. Mech., 135(12), 1467-1471. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000062.
  18. Li, C.J., Li, X.B., Li, D.Y. (2017), "Particle flow analysis of fracture characteristics of marble with a single hole", Chin. J. Eng., 39(12), 1791-1801. https://doi.org/10.13374/j.issn2095-9389.2017.12.003.
  19. Li, C., Zhang, W.L., Wu. Z, Sun, Y.H., Zhu, C. and Zhang, X.H. (2020), "A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques", Geomech. Eng., 22(5), 449-460. http://dx.doi.org/10.12989/gae.2020.22.5.449
  20. Li, P., Cai, M.F., Guo, Q.F. and Miao, S.J. (2019), "In situ stress state of the northwest region of the jiaodong peninsula, China from overcoring stress measurements in three gold mines", Rock Mech. Rock Eng., 52(11), 4497-4507. https://doi.org/10.1007/s00603-019-01827-3.
  21. Liu, J.H., Jiang, F.X., Wang, N.G., Li, Z.S. and Zhang, Z.G. (2012), "Research on reasonable width of segment pillar of fully mechanized caving face in extra-thick coal seam of deep shaft", Chin. J. Rock Mech. Eng., 31(5), 921-927. https://doi.org/10.1007/s11783-011-0280-z.
  22. Ma, N.J., Li, J. and Zhao, Z.Q. (2015), "Distribution of the deviatoric stress field and plastic zone in circular roadway surrounding rock", J. China U. Min. Technol., 44, 206-213. https://doi.org/10.13247/j.cnki.jcumt.000309.
  23. Maihemuti, B., Wang, E.Z., Hudan, T. and Xu, Q.J. (2016), "Numerical simulation analysis of reservoir bank fractured rock-slope deformation and failure processes", Int. J. Geomech., 16(2), 04015058. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000533.
  24. Palumbo, D., De Finis, R., Ancona, F. and Galietti, U. (2017), "Damage monitoring in fracture mechanics by evaluation of the heat dissipated in the cyclic plastic zone ahead of the crack tip with thermal measurements", Eng. Fract. Mech., 181, 65-76. https://doi.org/10.1016/j.engfracmech.2017.06.017.
  25. Paul, S.K. (2016), "Numerical models of plastic zones and associated deformations for elliptical inclusions in remote elastic loading-unloading with different R-ratios" Eng. Fract. Mech., 152, 72-80. https://doi.org/10.1016/j.engfracmech.2015.12.008.
  26. Poulos, H.G. and Davis, E.H., (1974), Elastic Solutions for Soil and Rock Mechanics, Wiley, New York, U.S.A.
  27. Tian, M.L., Han, L.J., Meng, Q.B., Ma, C., Zong, Y.J. and Mao, P.Q. (2020), "Physical model experiment of surrounding rock failure mechanism for the roadway under deviatoric stress form mining disturbance", KSCE J. Civ. Eng., 24(4), 1103-1115. https://doi.org/10.1007/s12205-020-1540-x.
  28. Rezaei, M., Hossaini, M.F. and Majdi, A. (2015), "Determination of longwall mining-induced stress using the strain energy Method", Rock. Mech. Rock. Eng., 48(6), 2421-2433. https://doi.org/10.1007/s00603-014-0704-8
  29. Vazaios, I., Vlachopoulos, N. and Diederichs, M.S. (2019), "Assessing fracturing mechanisms and evolution of excavation damaged zone of tunnels in interlocked rock masses at high stresses using a finite-discrete element approach", J. Rock Mech. Geotech., 11(4), 701-722. https://doi.org/10.1016/j.jrmge.2019.02.004.
  30. Vidigal-Souza, P.A., Vilas-Boas, D.B., Brandao, A.G. and Holz, M., (2020), "Seismic stratigraphy of camamu basin, Northeastern Brazil", Pure Appl. Geophys., 177(11), 5207-5224. https://doi.org/10.1007/s00024-020-02580-3.
  31. Vitali, O.P.M., Celestino, T.B. and Bobet, A. (2020), "Analytical solution for a deep circular tunnel in anisotropic ground and anisotropic geostatic stresses", Rock Mech. Rock Eng., 53(6), 3859-3884. https://doi.org/10.1007/s00603-020-02157-5.
  32. Wang, S.F., Huang, L.Q. and Li, X.B. (2020), "Analysis of rockburst triggered by hard rock fragmentation using a conical pick under high uniaxial stress", Tunn. Undergr. Sp. Tech., 96(2), 103195. https://doi.org/10.1016/j.tust.2019.103195.
  33. Yang, D.W., Ma, Z.G., Qi, F.Z., Gong, P., Liu, D.P., Zhao, G.Z. and Zhang. R.C. (2017a), "Optimization study on roof break direction of gob-side entry retaining by roof break and filling in thick-layer soft rock layer", Geomech. Eng., 13(2), 195-215. http://doi.org/10.12989/gae.2017.13.2.195.
  34. Yang, S.Q., Chen, M., Jing, H.W., Chen, K.F. and Meng, B. (2017b), "A case study on large deformation failure mechanism of deep soft rock roadway in Xin'an coal mine, china", Eng. Geol., 217, 89-101. https://doi.org/10.1016/j.enggeo.2016.12.012.
  35. Zhu. C., Chang, Y., Cui, X.B., Ren, F.Q. and Zhang, X.H. (2019), "Study on the size effect of fracture intersections based on the fractal theory", Geotech. Geol. Eng., 37(4), 2999-3006. https://doi.org/10.1007/s10706-019-00818-z.