Acknowledgement
This study was financed by Brazilian scientific agencies, namely the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), and the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) - Finance Code 001.
References
- Alam, S.Y., Zhu, R. and Loukili, A. (2020), "A new way to analyse the scale effect in quasi-brittle materials by scaling the heterogeneity size", Eng. Fract. Mech., 225. https://doi.org/10.1016/j.engfracmech.2019.106864.
- Andrade, H.C.C., Silva, A.B.C.G., Ribeiro, F.L.B. and Maghous, S. (2017), "A parallel poromechanics fem model", Proceedings of the XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering, Florianopolis-SC, Brazil. http://dx.doi.org/10.20906/CPS/CILAMCE2017-1165.
- Balomenos, G.P. and Pandey, M.D. (2017), "Probabilistic finite element investigation of prestressing loss in nuclear containment wall segments", Nucl. Eng. Des., 311, 50-59. https://doi.org/10.1016/j.nucengdes.2016.11.018.
- Balomenos, G.P., Genikomsou, A.S., Polak, M.A. and Pandey, M.D. (2015), "Efficient method for probabilistic finite element analysis with application to reinforced concrete slabs", Eng. Struct., 103, 85-101. https://doi.org/10.1016/j.engstruct.2015.08.038.
- Bazant, Z.P., Gettu, R., Jirasek, M., Barr, B.I.G, Carol, I., Carpinteri, A., Elices, M., Huet, C., Mihashi, H., Nemati, K.M., Planas, J., Ulm, F.J., Van Mier, J.G.M. and Van Vliet, M.R.A. (2004), "RILEM TC QFS 'Quasibrittle Fracture Scaling and Size Effect'-Final Report", Mater. Struct., 37, 547-568. https://doi.org/10.1007/BF02481579.
- Fairbairn, E.M.R., Ebecken, N.F.F., Paz, C.N.M. and Ulm, F.J. (2000), "Determination of probabilistic parameters of concrete: solving the inverse problem by using artificial neural networks", Comput. Struct., 78, 497-503. https://doi.org/10.1016/S0045-7949(00)00073-0.
- Fairbairn, E.M.R., Ferreira, I.A., Cordeiro, G.C., Silvoso, M.M., Toledo Filho, R.D. and Ribeiro, F.L. (2010), "Numerical simulation of dam construction using low-CO2-emission concrete", Mater. Struct., 43, 1061-1074. https://doi.org/10.1617/s11527-009-9566-z.
- Fairbairn, E.M.R., Guedes, Q.M. and Ulm, F.J. (1999), "An inverse problem analysis for the determination of probabilistic parameters of concrete behaviour modeled by a statistical approach", Mater. Struct., 32, 9-13. https://doi.org/10.1007/BF02480406.
- Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
- Genikomsou, A.S. and Polak, M.A. (2016), "Finite-element analysis of reinforced concrete slabs with punching shear reinforcement", J. Struct. Eng., 142(12), 04016129. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001603.
- Kaliakin, V.N. and Li, J. (1995), "Insight into deficiencies associated with commonly used zero-thickness interface elements", Comput. Geotech., 17(2), 225-252. https://doi.org/10.1016/0266-352X(95)93870-O.
- Kumar, S. and Barai, S.V. (2011), Concrete Fracture Models and Applications, Springer-Verlag Berlin Heidelberg.
- Mehta, P.K. and Monteiro, P.J.M. (2006), Concrete: Microstructure, Properties, and Materials, 3rd Edition, McGraw-Hill.
- Nader, C., Rossi, P. and Tailhan, J.L. (2019), "Multi-scale strategy for modeling macrocracks propagation in reinforced concrete structures", Cement Concrete Compos., 99, 262-274. https://doi.org/10.1016/j.cemconcomp.2018.04.012.
- Olsson, A., Sandberg, G. and Dahlblom, O. (2003), "On Latin hypercube sampling for structural reliability analysis", Struct. Saf., 25, 47-68. https://doi.org/10.1016/S0167-4730(02)00039-5.
- Paz, C.N.M., Martha, L.F., Alves, J.L.D., Fairbairn, E.M.R., Ebecken, N.F.F. and Coutinho, A.L.G.A. (2003), "Parallel implementation for probabilistic analysis of 3D discrete cracking concrete", High Performance Computing for Computational Science - VECPAR 2002 - 5th International Conference, Lecture Notes in Computer Science 2565, 79-93.
- Ribeiro, F.L.B. and Coutinho, A.L.G.A. (2005), "Comparison between element, edge and compressed storage schemes for iterative solutions in finite element analyses", Int. J. Numer. Meth. Eng., 63(4), 569-588. https://doi.org/10.1002/nme.1290.
- Ribeiro, F.L.B. and Ferreira, I.A. (2007), "Parallel implementation of the finite element method using compressed data structures", Comput. Mech., 41, 31-48. https://doi.org/10.1007/s00466-007-0166-x.
- Rita, M., Fairbairn, E., Ribeiro, F., Andrade, H. and Barbosa, H. (2018), "Optimization of mass concrete construction using a twofold parallel genetic algorithm", Appl. Sci., 8(3), 399. https://doi.org/10.3390/app8030399.
- Rossi, P. (1995), "Size effects in cracking of concrete: explanations and design consequences", Proceedings of IA-FRAMCOS 2, Zurich, Switzerland.
- Rossi, P. and Richer, S. (1987), "Numerical modelling of concrete cracking based on a stochastic approach", Mater. Struct., 20, 334-337. https://doi.org/10.1007/BF02472579.
- Rossi, P. and Tailhan, J.L. (2017), "Numerical modeling of the cracking behavior of a steel fiber-reinforced concrete bean on grade", Struct. Concrete, 18(4), 571-576. https://doi.org/10.1002/suco.201600002.
- Rossi, P. and Wu, X. (1992), "Probabilistic model for material behavior analysis and appraisement of concrete structures", Mag. Concrete Res., 44(161), 271-280. https://doi.org/10.1680/macr.1992.44.161.271.
- Rossi, P., Daviau-Desnoyers, D. and Tailhan, J.L. (2018), "Probabilistic numerical model of cracking in ultra-high performance fibre reinforced concrete (UHPFRC) Beams Subjected to Shear Loading", Cement Concrete Compos., 90, 119-125. https://doi.org/10.1016/j.cemconcomp.2018.03.019.
- Rossi, P., Ulm, F.J. and Hachi, F. (1996), "Compressive behavior of concrete: physical mechanisms and modeling", J. Eng. Mech., 122(11), 1038-1043. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:11(1038).
- Rossi, P., Wu, X., Le Maou, F. and Belloc, A. (1994), "Scale effect on concrete in tension", Mater. Struct., 27, 437-444. https://doi.org/10.1007/BF02473447.
- Schellekens, J.C.J. and De Borst, R. (1993), "On the numerical integration of interface elements", Int. J. Numer. Meth. Eng., 36(1), 43-66. https://doi.org/10.1002/nme.1620360104.
- Schlangen, E. and Van Mier, J.G.M. (1992), "Simple lattice model for numerical simulation of fracture of concrete", Mater. Struct., 25, 534-542. https://doi.org/10.1007/BF02472449.
- Silva, A.B.C.G., Andrade, H.C.C., Fairbairn, E.M.R., Telles, J.C.F., Ribeiro, F.L.B., Toledo-Filho, R.D. and Medeiros, J. (2020), "Modeling refractory concrete lining of fluid catalytic cracking units of oil refineries", Comput. Concrete, 25(1), 29-36. https://doi.org/10.12989/cac.2020.25.1.029.
- Silva, A.B.C.G., Telles, J.C.F., Fairbairn, E.M.R. and Ribeiro, F.L.B. (2015), "A general tangent operator applied to concrete using a multi-surface plasticity model", Comput. Concrete, 16(2), 329-342. http://dx.doi.org/10.12989/cac.2015.16.2.329.
- Silva, A.B.C.G., Wrobel, L.C. and Ribeiro, F.L.B. (2018), "A thermoregulation model for whole body cooling hypothermia", J. Therm. Biology, 78, 122-130. https://doi.org/10.1016/j.jtherbio.2018.08.019.
- Tailhan, J.L., Dal Pont, S. and Rossi, P. (2010), "From local to global probabilistic modeling of concrete cracking", Ann. Solid Struct. Mech., 1, 103-115. https://doi.org/10.1007/s12356-010-0008-y.
- Tailhan, J.L., Rossi, P. and Daviau-Desnoyers, D. (2015), "Probabilistic numerical modelling of cracking in steel fibre reinforced concretes (SFRC) structures", Cement Concrete Compos., 55, 315-321. https://doi.org/10.1016/j.cemconcomp.2014.09.017.
- Tang, T., Shah, S.P. and Ouyang, C. (1992), "Fracture mechanics and size effect of concrete in tension", J. Struct. Eng., 118, 3169-3185. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3169).
- Tang, X., Zhou, Y., Zhang, C. and Shi, J. (2011), "Study on the heterogeneity of concrete and its failure behaviour using the equivalent probabilistic model", J. Mater. Civil Eng., 23(4), 402-413. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000179.
- Van Damme, H. (2018), "Concrete material science: past, present, and future innovations", Cement Concrete Res., 112, 5-24. https://doi.org/10.1016/j.cemconres.2018.05.002.