DOI QR코드

DOI QR Code

A 3D probabilistic model for explicit cracking of concrete

  • Mota, Magno T. (Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro, Centro de Tecnologia - Ilha do Fundao) ;
  • Fairbairn, Eduardo M.R. (Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro, Centro de Tecnologia - Ilha do Fundao) ;
  • Ribeiro, Fernando L.B. (Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro, Centro de Tecnologia - Ilha do Fundao) ;
  • Rossi, Pierre (Department of Materials and Structures, Gustave Eiffel University) ;
  • Tailhan, Jean-Louis (Department of Materials and Structures, Gustave Eiffel University, Laboratoire de Biomecanique Appliquee) ;
  • Andrade, Henrique C.C. (Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro, Centro de Tecnologia - Ilha do Fundao) ;
  • Rita, Mariane R. (Department of Civil Engineering, COPPE, Federal University of Rio de Janeiro, Centro de Tecnologia - Ilha do Fundao)
  • Received : 2020.10.12
  • Accepted : 2021.04.19
  • Published : 2021.06.25

Abstract

Concrete is globally the most used building material. This fact shows the need to make advances in the prediction of its mechanical behavior. Despite being considered homogenous in many cases for simplification purposes, this material naturally has a high degree of heterogeneity, which presents challenges in terms of fracture process modeling, due to phenomena such as scale effect and softening behavior. In this context, the objective of this work is to present a 3D probabilistic cracking model based on the finite element method, in which material discontinuities are explicitly represented by interface elements. The three-dimensional modeling of cracks makes it possible to analyze the fracture process in a more realistic way. In order to estimate statistical parameters that define the material heterogeneity, an inverse analysis procedure was performed using general laws defined by experimental investigations. The model and the inverse analysis strategy were validated mainly by the verification of scale effect at a level similar to that experimentally observed, taking into account the tensile failure of plain concretes. Results also indicate that different softening levels can be obtained.

Keywords

Acknowledgement

This study was financed by Brazilian scientific agencies, namely the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), and the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) - Finance Code 001.

References

  1. Alam, S.Y., Zhu, R. and Loukili, A. (2020), "A new way to analyse the scale effect in quasi-brittle materials by scaling the heterogeneity size", Eng. Fract. Mech., 225. https://doi.org/10.1016/j.engfracmech.2019.106864.
  2. Andrade, H.C.C., Silva, A.B.C.G., Ribeiro, F.L.B. and Maghous, S. (2017), "A parallel poromechanics fem model", Proceedings of the XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering, Florianopolis-SC, Brazil. http://dx.doi.org/10.20906/CPS/CILAMCE2017-1165.
  3. Balomenos, G.P. and Pandey, M.D. (2017), "Probabilistic finite element investigation of prestressing loss in nuclear containment wall segments", Nucl. Eng. Des., 311, 50-59. https://doi.org/10.1016/j.nucengdes.2016.11.018.
  4. Balomenos, G.P., Genikomsou, A.S., Polak, M.A. and Pandey, M.D. (2015), "Efficient method for probabilistic finite element analysis with application to reinforced concrete slabs", Eng. Struct., 103, 85-101. https://doi.org/10.1016/j.engstruct.2015.08.038.
  5. Bazant, Z.P., Gettu, R., Jirasek, M., Barr, B.I.G, Carol, I., Carpinteri, A., Elices, M., Huet, C., Mihashi, H., Nemati, K.M., Planas, J., Ulm, F.J., Van Mier, J.G.M. and Van Vliet, M.R.A. (2004), "RILEM TC QFS 'Quasibrittle Fracture Scaling and Size Effect'-Final Report", Mater. Struct., 37, 547-568. https://doi.org/10.1007/BF02481579.
  6. Fairbairn, E.M.R., Ebecken, N.F.F., Paz, C.N.M. and Ulm, F.J. (2000), "Determination of probabilistic parameters of concrete: solving the inverse problem by using artificial neural networks", Comput. Struct., 78, 497-503. https://doi.org/10.1016/S0045-7949(00)00073-0.
  7. Fairbairn, E.M.R., Ferreira, I.A., Cordeiro, G.C., Silvoso, M.M., Toledo Filho, R.D. and Ribeiro, F.L. (2010), "Numerical simulation of dam construction using low-CO2-emission concrete", Mater. Struct., 43, 1061-1074. https://doi.org/10.1617/s11527-009-9566-z.
  8. Fairbairn, E.M.R., Guedes, Q.M. and Ulm, F.J. (1999), "An inverse problem analysis for the determination of probabilistic parameters of concrete behaviour modeled by a statistical approach", Mater. Struct., 32, 9-13. https://doi.org/10.1007/BF02480406.
  9. Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
  10. Genikomsou, A.S. and Polak, M.A. (2016), "Finite-element analysis of reinforced concrete slabs with punching shear reinforcement", J. Struct. Eng., 142(12), 04016129. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001603.
  11. Kaliakin, V.N. and Li, J. (1995), "Insight into deficiencies associated with commonly used zero-thickness interface elements", Comput. Geotech., 17(2), 225-252. https://doi.org/10.1016/0266-352X(95)93870-O.
  12. Kumar, S. and Barai, S.V. (2011), Concrete Fracture Models and Applications, Springer-Verlag Berlin Heidelberg.
  13. Mehta, P.K. and Monteiro, P.J.M. (2006), Concrete: Microstructure, Properties, and Materials, 3rd Edition, McGraw-Hill.
  14. Nader, C., Rossi, P. and Tailhan, J.L. (2019), "Multi-scale strategy for modeling macrocracks propagation in reinforced concrete structures", Cement Concrete Compos., 99, 262-274. https://doi.org/10.1016/j.cemconcomp.2018.04.012.
  15. Olsson, A., Sandberg, G. and Dahlblom, O. (2003), "On Latin hypercube sampling for structural reliability analysis", Struct. Saf., 25, 47-68. https://doi.org/10.1016/S0167-4730(02)00039-5.
  16. Paz, C.N.M., Martha, L.F., Alves, J.L.D., Fairbairn, E.M.R., Ebecken, N.F.F. and Coutinho, A.L.G.A. (2003), "Parallel implementation for probabilistic analysis of 3D discrete cracking concrete", High Performance Computing for Computational Science - VECPAR 2002 - 5th International Conference, Lecture Notes in Computer Science 2565, 79-93.
  17. Ribeiro, F.L.B. and Coutinho, A.L.G.A. (2005), "Comparison between element, edge and compressed storage schemes for iterative solutions in finite element analyses", Int. J. Numer. Meth. Eng., 63(4), 569-588. https://doi.org/10.1002/nme.1290.
  18. Ribeiro, F.L.B. and Ferreira, I.A. (2007), "Parallel implementation of the finite element method using compressed data structures", Comput. Mech., 41, 31-48. https://doi.org/10.1007/s00466-007-0166-x.
  19. Rita, M., Fairbairn, E., Ribeiro, F., Andrade, H. and Barbosa, H. (2018), "Optimization of mass concrete construction using a twofold parallel genetic algorithm", Appl. Sci., 8(3), 399. https://doi.org/10.3390/app8030399.
  20. Rossi, P. (1995), "Size effects in cracking of concrete: explanations and design consequences", Proceedings of IA-FRAMCOS 2, Zurich, Switzerland.
  21. Rossi, P. and Richer, S. (1987), "Numerical modelling of concrete cracking based on a stochastic approach", Mater. Struct., 20, 334-337. https://doi.org/10.1007/BF02472579.
  22. Rossi, P. and Tailhan, J.L. (2017), "Numerical modeling of the cracking behavior of a steel fiber-reinforced concrete bean on grade", Struct. Concrete, 18(4), 571-576. https://doi.org/10.1002/suco.201600002.
  23. Rossi, P. and Wu, X. (1992), "Probabilistic model for material behavior analysis and appraisement of concrete structures", Mag. Concrete Res., 44(161), 271-280. https://doi.org/10.1680/macr.1992.44.161.271.
  24. Rossi, P., Daviau-Desnoyers, D. and Tailhan, J.L. (2018), "Probabilistic numerical model of cracking in ultra-high performance fibre reinforced concrete (UHPFRC) Beams Subjected to Shear Loading", Cement Concrete Compos., 90, 119-125. https://doi.org/10.1016/j.cemconcomp.2018.03.019.
  25. Rossi, P., Ulm, F.J. and Hachi, F. (1996), "Compressive behavior of concrete: physical mechanisms and modeling", J. Eng. Mech., 122(11), 1038-1043. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:11(1038).
  26. Rossi, P., Wu, X., Le Maou, F. and Belloc, A. (1994), "Scale effect on concrete in tension", Mater. Struct., 27, 437-444. https://doi.org/10.1007/BF02473447.
  27. Schellekens, J.C.J. and De Borst, R. (1993), "On the numerical integration of interface elements", Int. J. Numer. Meth. Eng., 36(1), 43-66. https://doi.org/10.1002/nme.1620360104.
  28. Schlangen, E. and Van Mier, J.G.M. (1992), "Simple lattice model for numerical simulation of fracture of concrete", Mater. Struct., 25, 534-542. https://doi.org/10.1007/BF02472449.
  29. Silva, A.B.C.G., Andrade, H.C.C., Fairbairn, E.M.R., Telles, J.C.F., Ribeiro, F.L.B., Toledo-Filho, R.D. and Medeiros, J. (2020), "Modeling refractory concrete lining of fluid catalytic cracking units of oil refineries", Comput. Concrete, 25(1), 29-36. https://doi.org/10.12989/cac.2020.25.1.029.
  30. Silva, A.B.C.G., Telles, J.C.F., Fairbairn, E.M.R. and Ribeiro, F.L.B. (2015), "A general tangent operator applied to concrete using a multi-surface plasticity model", Comput. Concrete, 16(2), 329-342. http://dx.doi.org/10.12989/cac.2015.16.2.329.
  31. Silva, A.B.C.G., Wrobel, L.C. and Ribeiro, F.L.B. (2018), "A thermoregulation model for whole body cooling hypothermia", J. Therm. Biology, 78, 122-130. https://doi.org/10.1016/j.jtherbio.2018.08.019.
  32. Tailhan, J.L., Dal Pont, S. and Rossi, P. (2010), "From local to global probabilistic modeling of concrete cracking", Ann. Solid Struct. Mech., 1, 103-115. https://doi.org/10.1007/s12356-010-0008-y.
  33. Tailhan, J.L., Rossi, P. and Daviau-Desnoyers, D. (2015), "Probabilistic numerical modelling of cracking in steel fibre reinforced concretes (SFRC) structures", Cement Concrete Compos., 55, 315-321. https://doi.org/10.1016/j.cemconcomp.2014.09.017.
  34. Tang, T., Shah, S.P. and Ouyang, C. (1992), "Fracture mechanics and size effect of concrete in tension", J. Struct. Eng., 118, 3169-3185. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3169).
  35. Tang, X., Zhou, Y., Zhang, C. and Shi, J. (2011), "Study on the heterogeneity of concrete and its failure behaviour using the equivalent probabilistic model", J. Mater. Civil Eng., 23(4), 402-413. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000179.
  36. Van Damme, H. (2018), "Concrete material science: past, present, and future innovations", Cement Concrete Res., 112, 5-24. https://doi.org/10.1016/j.cemconres.2018.05.002.