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THE GORENSTEIN TRANSPOSE OF COMODULES

Yexuan Li and Hailou Yao

Abstract. Let Γ be a Gorenstein coalgebra over a filed k. We introduce

the Gorenstein transpose via a minimal Gorenstein injective copresenta-

tion of a quasi-finite Γ-comodule, and obtain a relation between a Goren-
stein transpose of a quasi-finite comodule and a transpose of the same

comodule. As an application, we obtain that the almost split sequences
are constructed in terms of Gorenstein transpose.

1. Introduction and preliminaries

Auslander-Reiten theory plays an important role in the representation the-
ory. As a key ingredient in this theory, the transpose plays a central role,
especially in the construction of the Auslander-Reiten sequence. The notion
of the transpose of finitely generated module was introduced by Auslander
and Bridger in [2], and the well-known almost split sequences were discov-
ered by Auslander and Reiten [3] for finitely generated modules over a finite-
dimensional (artin) algebra. As a generalization of the transpose of finitely gen-
erated module, Huang [7] introduced the notion of the Gorenstein transpose of
finitely generated modules. Dual to the representation theory of algebras, the
researches about the representation theory of coalgebras have been on the rise.
Chin, Kleiner and Quinn [4] introduced the notion of the transpose of a comod-
ule which is constructed via a minimal injective copresentation of a quasi-finite
comodule. Chin and Simson [5] showed the existence of almost split sequences
in the category of finitely copresented comodules over semiperfect coalgebras.
In recent years, the relative homological coalgebra has been extensively studied
by many mathematicians (see for example [1, 6, 8, 9]). Asensio, López Ramos
and Torrecillas [1] introduced the notion of Gorenstein injective comodules and
proved the equivalent conditions of Gorenstein injective comodules over an n-
Gorenstein coalgebra.
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Inspired by the above researches, in this paper, we introduce the notion
of the Gorenstein transpose via a minimal Gorenstein injective copresentation
of a comodule over a Gorenstien coalgebra, and establish a relation between
a Gorenstein transpose of a comodule and a transpose of the same comod-
ule. We prove that the transpose of a quasi-finite comodule M is an extension
of a Gorenstein injective comodule along the Gorenstein transpose of M . In
particular, Gorenstein transpose shares many nice homological properties of
transpose. Then some applications are given: (1) For the quasi-finite comod-
ules, the Gorenstein transpose of a finite injective dimension comodule can be
decomposed into a direct sum of the transpose of the same comodule and a
Gorenstein injective comodule. (2) We construct an almost split sequence in
terms of the Gorenstein transpose. If a quasi-finite Γ-comodule M is indecom-
posable, non-Gorenstein injective and dimTrGM < ∞, then there exists an
almost split sequence of the form 0→M → Y → DTrGM → 0.

We now fix the terminology and recall some definitions used in this paper.
Denote by Γ a k-coalgebra with comultiplication ∆ : Γ → Γ ⊗ Γ and counit
ε : Γ→ k, where ⊗ = ⊗k. A right Γ-comodule M is given by a structure map
ρ : M →M⊗Γ, the categoryMΓ of all right Γ-comodules is an abelian category
with enough injectives. We identify the category ΓM of left Γ-comodules with
the category MΓop

, where Γop is the opposite coalgebra of Γ.
Recall from [1] that a coalgebra Γ is said to be an n-Gorenstein coalgebra if

it is semiperfect on both sides and if pd(Γ) ≤ n as right and left Γ-comodule.
We will call Γ a Gorenstein coalgebra if it is n-Gorenstein for some n. A right
Γ-comodule N is called Gorenstein injective (see [1]) if and only if there exists
an exact sequence · · · → E1 → E0 → E0 → E1 → · · · of injective right Γ-
comodules with N = Ker(E0 → E1) and such that the functor ComΓ(E,−)
leaves it exact for any injective right Γ-comodule E. It is clear that an injective
comodule is Gorenstein injective and that in a complete injective resolution,
all the kernels and hence all the images and cokernels are Gorenstein injective.
Note that if Γ is a Gorenstein coalgebra, then every right Γ-comodule has
a Gorenstein injective envelope. Let GI be the full subcategory of MΓ of
Gorenstein injective comodules and GP be the class of Gorenstein projective
comodules. Let IΓ and PΓ denote the full subcategory determined by the
injectives and the class of projective right Γ-comodules, respectively.

A comodule M ∈MΓ is quasi-finite if dimk ComΓ(F,M) <∞ for all finite-
dimensional F ∈MΓ. In what follows,MΓ

q denotes the full subcategory ofMΓ

determined by the quasi-finite comodules. Recall from [10] that if X ∈MΓ
q and

Y ∈MΓ, then hΓ(X,Y ) = lim
−→

DComΓ(Yλ, X), where {Yλ} is the set of finite-

dimensional subcomodules of Y . hΓ(−,−) is an additive right exact bifunctor,
which is called the cohom functor. Let ∗ denote the contravariant functor
( )∗ = hΓ(−,Γ) : MΓ

q → MΓop

, as well as hΓop(−,Γop) : MΓop

q → MΓ. We

say that an X ∈MΓ
q is strongly quasi-finite if X∗ ∈MΓop

q and denote byMΓ
sq

the full subcategory of MΓ determined by all strongly quasi-finite comodules.
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Recall from [4] that a comodule M ∈ MΓ is quasi-finite copresented if its
minimal injective copresentation 0 → M → I0 → I1 satisfies Ii ∈ IΓ is quasi-
finite for j = 0, 1; in the following, MΓ

qc denotes the full subcategory of MΓ

determined by the quasi-finite copresented comodules.
Throughout this paper, all comodules in MΓ are quasi-finite.

2. The transpose

Firstly, we recall the notation of transpose in [4] and list some results in
order to make the article self-contained.

Definition ([4]). If 0→M → E0 → E1 is a minimal injective copresentation of
M ∈MΓ, then we define TrM as a left Γ-comodule which makes the sequence

0→ TrM → E∗1 → E∗0

exact. We call Ker(E∗1 → E∗0 ) a transpose of M .

Remark 2.1. The transpose TrM of M is determined uniquely up to isomor-
phism, and 0 → TrM → E∗1 → E∗0 is a minimal injective copresentation of
TrM ∈MΓop

q .

Proposition 2.2 ([4]). (a) The map η :∗∗= hΓop(hΓ(−,Γ),Γ) → E given by
ηX : X∗∗ → X is a natural transformation of functors, where E :MΓ

sq →MΓ

is the natural embedding.
(b) The restriction of η to IΓ is a natural isomorphism ∗∗ → 1IΓ .
(c) ∗ : IΓ → IΓop

and ∗ : IΓop → IΓ are dualities.

Denote by (MΓ
q )I the full subcategory ofMΓ

q whose objects have no nonzero

injective summands. For each M ∈ MΓ
q there is a unique up to isomorphism

decomposition M = MI⊕M ′ where MI ∈ (MΓ
q )I and M ′ ∈ IΓ. The following

result is an analog of [3, IV Proposition 1.7].

Proposition 2.3 ([4]). Let M ∈MΓ, we have the following.
(a) If M = ⊕α∈AMα, then Mα ∈MΓ

qc and TrM ∼= ⊕α∈ATrMα.
(b) TrM = 0 if and only if M is injective.
(c) TrTrM ∼= MI .
(d) If M,N ∈ (MΓ)I , then TrM ∼= TrN if and only if M ∼= N .
(e) Tr : MΓ → MΓop

induces a bijection between the isomorphism classes
of indecomposable comodules in (MΓ)I and (MΓop

)I .

Proposition 2.4. Let 0→M → E0 → E1 be a minimal injective copresenta-
tion of M ∈MΓ. If X ∈MΓ, then there is an exact sequence

0→ X�ΓTrM → hΓ(E1, X)→ hΓ(E0, X)→ hΓ(M,X)→ 0

with all morphisms functorial in X.
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Proof. The exact sequence 0 → TrM → E∗1 → E∗0 gives rise to the commuta-
tive exact diagram:

0 // X�ΓTrM // X�ΓE
∗
1

//

∼=
��

X�ΓE
∗
0

∼=
��

hΓ(E1, X) // hΓ(E1, X) // hΓ(M,X) // 0

So, it is easy to get our desired exact sequence from the above commutative
diagram. �

If Γ is a right semiperfect coalgebra, then the category of all right Γ-
comodules has enough projectives. Let TΓ be quasi-finite, for any right Γ-
comodule M , we consider its projective resolution:

· · · → P1 → P0 →M → 0.

In this way, we obtain the left derived functor Ln(hΓ(T,−)). We denote it by
extnΓ(T,−). Similarly, by the quasi-finite injective resolution of M in MΓ

q , we
obtain the right derived functor extnΓ(−, X) for any right Γ-comodule X. Since
D(hΓ(T,X)) ∼= ComΓ(X,T ) for any X ∈MΓ, it follows that D(extnΓ(T,X)) ∼=
ExtnΓ(X,T ) (see Proposition 12.2.2 in [11]). It is easy to show that idΓT ≤ n

if and only if D(extn+1
Γ (T,N)) ∼= Extn+1

Γ (N,T ) = 0 for any N ∈ MΓ, if and

only if extn+1
Γ (T,N) = 0 for any N in MΓ.

Proposition 2.5. Let Γ be a coalgebra and M ∈ MΓop

sq . Then for each X in

MΓ we have an exact sequence

0→ ext2Γ(TrM,X)→ hΓ(M∗, X)
αX−→ X�ΓM → ext1Γ(TrM,X)→ 0

where all morphisms are functorial in X.

Proof. Let 0→ M
f→ E0

g→ E1 be a minimal injective copresentation of M .
Then we have an exact sequence

0→ TrM→ E∗1
g∗→ E∗0

f∗

→M∗ → 0.

Let K = Img∗ and applying the functor ( )∗ = hΓ(−,Γ) on the exact sequences

both 0→ K→ E∗0
f∗

→ M∗ → 0 and 0→ TrM→ E∗1 → K → 0. Since the E∗i
is an injective Γ-comodule for i = 0, 1 by Proposition 2.2, it is not hard to see
the following for all X in MΓ.

(a) 0 → ext2Γ(TrM,X) → hΓ(M∗, X)
hΓ(f∗,X)−→ hΓ(E∗0 , X) is an exact

sequence with all morphisms functorial in X.
(b) 0 → ext1Γ(TrM,X) → CokerhΓ(f∗, X) → hΓ(E∗1 , X) is an exact

sequence with all morphisms functorial in X.
By Propositions 1.13 and 1.14 in [10], we have that hΓ(E∗i , X) ∼= X�ΓEi,

for i = 0, 1. Using these observations, it is not difficult to deduce our desired
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exact sequence from the commutative diagram with exact second row:

hΓ(M∗, X)
hΓ(f∗,X)//

αX

��

hΓ(E∗0 , X)
hΓ(g∗,X)//

∼=
��

hΓ(E∗1 , X)

∼=
��

0 // X�ΓM
ϕ // X�ΓE0

ψ // X�ΓE1 �

Remark 2.6. Proposition 2.5 is a generalization of a result by Auslander and
Reiten [3] (Chapter IV. Proposition 3.2).

Corollary 2.7. Let Γ be a coalgebra and M ∈ MΓop

sq . Then we have an exact
sequence

0→ ext2Γ(TrM,Γ)→M∗∗
αΓ−→M → ext1Γ(TrM,Γ)→ 0.

Definition. Let M ∈ MΓop

sq . M is said to be reflexive if αΓ : M∗∗−→M is an
isomorphism.

We have the following immediate consequence of Proposition 2.5.

Corollary 2.8. Let Γ be a coalgebra. Then
(1) M ∈MΓop

sq is reflexive if and only if extiΓ(TrM,Γ) = 0 for i = 1, 2.

(2) Γ is selfprojective if and only if every M ∈MΓop

sq is reflexive.

3. The Gorenstein transpose

In this section, we introduce the notion of Gorenstein transpose of comod-
ules. Throughout this section, Γ will be a Gorenstein coalgebra.

Definition. If 0 → M → I0
f→ I1 is a minimal Gorenstein injective copre-

sentation of M in MΓ, that is, 0 → M → I0 and Imf → I1 are Gorenstein
injective envelope, then we define TrGM as a Γop-comodule which makes the
sequence

0→ TrGM → I∗1
f∗

→ I∗0

exact. We call Ker(I∗1 → I∗0 ) a Gorenstein transpose of M .

Remark 3.1. It is trivial that a transpose of M in MΓ is a Gorenstein trans-
pose of M , but the converse is not true in general. For example, if a comodule
N ∈ MΓ is Gorenstein injective but not injective, then the Gorenstein trans-
pose of N is zero, and any transpose of N is Gorenstein injective (see Corollary
3.5 below) but non-zero (otherwise, if a transpose of N is zero, then N is in-
jective, which is a contradiction). So it is interesting to study the connections
between Gorenstein transposes and transposes.

Lemma 3.2. Let M ∈ MΓ. If M is Gorenstein injective, then so is M∗ in
MΓop

.
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Proof. Let M ∈ MΓ be Gorenstein injective. Then by the definition, there is
an exact sequence

0→M → E0 → E1 → · · · → En

where each Ei is an injective Γ-comodule. Now applying the functor ( )∗ on
the above sequence, we get an exact sequence

E∗n → · · · → E∗1 → E∗0 →M∗ → 0

where each E∗i is an injective Γop-comodule by Proposition 2.2. Thus M∗ ∈
MΓop

is Gorenstein injective by Theorem 3.5 in [1]. �

The following theorem establishes a relation between a Gorenstein transpose
of a comodule and a transpose of the same comodule.

Theorem 3.3. Suppose that M ∈ MΓ. Then, for any Gorenstein transpose
of M , there exists an exact sequence

0→ K → TrM → TrGM → 0

in MΓop

with K Gorenstein injective.

Proof. Let 0→ M→ I0
f→ I1 be a minimal Gorenstein injective copresentation

of M . Let K1 = Imf, K2 = Cokerf and f = iα be the natural epic-monic

factorization of f . Then we have an exact sequence 0→ TrGM→ I∗1
f∗

→ I∗0 →
M∗ → 0. Since I0 is a Gorenstein injective comodule, there exists an exact
sequence 0 → I0 → E0 → I ′0 → 0 in MΓ with E0 injective and I ′0 Gorenstein
injective. Then we have the following push-out diagram:

0

��

0

��
0 // M // I0 //

��

K1

��

// 0

0 // M // E0
//

��

K ′1 //

��

0

I ′0

��

I ′0

��
0 0

Diagram (1)
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Now consider the following push-out diagram:

0

��

0

��
0 // K1

//

��

I1 //

��

K2
// 0

0 // K ′1 //

��

I //

��

K2
// 0

I ′0

��

I ′0

��
0 0

Diagram (2)

Since I1, I
′
0 are Gorenstein injective and the class GI is closed under extension

(see Theorem 2.8 in [9]), it follows that I is Gorenstein injective. Thus there
exists an exact sequence 0 → I → E′0 → I ′ → 0 in MΓ with E′0 injective and
I ′ Gorenstein injective. Then we have the following push-out diagram:

0

��

0

��
0 // K ′1 // I //

��

K2

��

// 0

0 // K ′1 // E′0 //

��

K ′2 //

��

0

I ′

��

I ′

��
0 0

Diagram (3)
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Combining the above commutative diagrams (2) and (3), we get the following
commutative diagram with exact rows:

0 // K1
//

��

I1 //

��

K2
// 0

0 // K ′1 // I //

��

K2
//

��

0

0 // K ′1 // E′0 // K ′2 // 0

Diagram (4)

Then we have the following commutative diagram with exact columns and rows:

0

��

0

��

0

��
0 // K1

//

��

I1 //

��

K2

��

// 0

0 // K ′1 //

��

E′0 //

��

K ′2 //

��

0

I ′0

��

H2

��

I ′

��
0 0 0

Diagram (5)

where H2 = Coker(I1 → E′0). By the snake lemma, we get the exact sequence
0 → I ′0 → H2 → I ′ → 0. Since I ′ and I ′0 are Gorenstein injective, H2 is
Gorenstein injective. Combining the above diagram (5) with the diagram (1)
in this proof, we obtain the following commutative diagram with exact columns
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and rows:

0

��

0

��

0

��
0 // M // I0 //

��

I1 //

��

K2

��

// 0

0 // M // E0
//

��

E′0 //

��

K ′2 //

��

0

0 // I ′0
g //

��

H2
//

��

I ′ //

��

0

0 0 0

Diagram (6)

Applying the functor ( )∗ = hΓ(−,Γ) on above diagram (6), we get the following
commutative diagram with exact columns and rows:

0

��

0

��
0 // kerg∗ //

��

H∗2
g∗ //

��

I ′∗0

��

// 0

0 // TrM //

��

E′∗0 //

��

E∗0 //

��

M∗ // 0

0 // TrGM // I∗1 //

��

I∗0 //

��

M∗ // 0

0 0

Diagram (7)

By the snake lemma, we obtain an exact sequence

0→ kerg∗ → TrM → TrGM → 0

in MΓop

with kerg∗ ∼= I ′∗ Gorenstein injective. �

Corollary 3.4. Let M ∈MΓ. If TrGM is quasi-finite, then

extiΓop(TrGM,Γ) ∼= extiΓop(TrM,Γ).
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Proof. By Theorem 3.3 we have an exact sequence 0→ K → TrM → TrGM →
0 in MΓop

with K Gorenstein injective. Applying the functor ( )∗ on the se-
quence, we obtain a long exact sequence

· · · → ext2Γop(K,Γ)→ ext1Γop(TrGM,Γ)→ ext1Γop(TrM,Γ)

→ ext1Γop(K,Γ)→ (TrGM)∗ → (TrM)∗ → K∗ → 0.

Since K is Gorenstein injective, it follows that extiΓop(K,Γ) ∼= DExtiΓop(Γ,K)
= 0 for i = 0, 1 . . . . So we have extiΓop(TrGM,Γ) ∼= extiΓop(TrM,Γ). �

By Proposition 2.5 and Corollary 3.4, for any M ∈ MΓ
sq, if TrGM ∈ MΓop

is quasi-finite, then we obtain the following exact sequence:

0→ ext2Γop(TrGM,Γ)→M∗∗
αΓ−→M → ext1Γop(TrGM,Γ)→ 0.

It is easy to see that if M is Gorenstein injective, then M∗∗ ∼= M .

Corollary 3.5. Let M ∈MΓ. Then we have
(a) TrGM = 0 if and only if M is Gorenstein injective.
(b) If M is Gorenstein injective, then TrM is Gorenstein injective.
(c) If M ∈MΓ

sq is Gorenstein injective and TrGM ∈MΓop

q , then M ∼= M∗∗.

(d) If TrGM ∈ MΓop

q , then M ∈ MΓ
sq is a reflexive comodule if and only if

extiΓop(TrGM,Γ) = 0 for i = 1, 2.

Proof. By Theorem 3.3 and Corollary 3.4, it is easy to check. �

Proposition 3.6. Let A be the full subcategory of MΓ consisting of all right
Γ-comodules A with GidΓA ≤ 1. Then the contravariant functors TrG :
AΓ/GI → MΓop

and ext1Γ(−,Γ) : AΓ/GI → MΓop

are isomorphic, where
AΓ/GI is the category AΓ modulo Gorenstein injectives.

Proof. Let 0→ A→ I0 → I1 → 0 be a minimal Gorenstein injective resolution
for A in AΓ. Then

0→ ext1Γ(A,Γ)→ I∗1 → I∗0 → A∗ → 0

is exact. In fact, ext1Γ(I0,Γ) = 0 since I0 is Gorenstein injective comodule and

pdΓΓ < ∞. This gives an isomorphism TrGA ∼= ext1Γ(A,Γ) in MΓop

which is
not difficult to be checked functorial in A. �

Next, we give a new relation between the Gorenstein transpose of a comodule
and the transpose of the same comodule.

Theorem 3.7. Let M ∈ MΓ. If N ∈ MΓop

is a Gorenstein transpose of M ,
then N is a transpose of L, where 0→ I → L→ M → 0 is an exact sequence
in MΓ with I Gorenstein injective.

Proof. Let N be a Gorenstein transpose of M . Then there exists a minimal

Gorenstein injective copresentation 0 → M → I0
f→ I1 of M . Applying the

functor ( )∗ on the above sequence, we obtain an exact sequence 0→ TrGM →
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I∗1
f∗

→ I∗0 → M∗ → 0. Since I1 is Gorenstein injective, there exists an exact
sequence 0 → I ′1 → E1 → I1 → 0 in MΓ with E1 injective and I ′1 Gorenstein
injective. Let K1 = Imf and K2 = Cokerf , then we get the following pull-back
diagram:

0

��

0

��
I ′1

��

I ′1

��
0 // K ′1 //

��

E1
//

��

K2
// 0

0 // K1
//

��

I1 //

��

K2
// 0

0 0

Diagram (8)

Hence we have the following pull-back diagram:

0

��

0

��
I ′1

��

I ′1

��
0 // M // I //

π

��

K ′1

��

// 0

0 // M // I0 //

��

K1
//

��

0

0 0

Diagram (9)

Since I0, I
′
1 are Gorenstein injective and the class GI is closed under extension,

it follows that I is also Gorenstein injective. Thus there is an exact sequence
0 → I ′ → E0 → I → 0 in MΓ with E0 injective and I ′ Gorenstein injective.
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Now consider the following pull-back diagram:

0

��

0

��
I ′

��

I ′

��
0 // L //

��

E0
//

ϕ

��

K ′1 // 0

0 // M //

��

I //

��

K ′1 // 0

0 0

Diagram (10)

Combining the above commutative diagrams (9) and (10), we have the following
commutative diagram with exact rows and columns:

0

��

0

��

0

��
I ′

��

H

��

I ′1

��
0 // L //

��

E0
//

πϕ

��

K ′1

��

// 0

0 // M //

��

I0 //

��

K1
//

��

0

0 0 0

Diagram (11)

where H = ker(πϕ). By the snake lemma, we get the exact sequence 0 →
I ′ → H → I ′1 → 0. Since I ′ and I ′1 are Gorenstein injective, H is Gorenstein
injective. Combining the above diagram (11) with the diagram (8) in this proof,
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we obtain the following exact commutative diagram:

0

��

0

��

0

��
0 // I ′ //

��

H //

��

I ′1 //

��

0

0 // L //

��

E0
//

πϕ

��

E1

��

// K2
// 0

0 // M //

��

I0 //

��

I1 //

��

K2
// 0

0 0 0

Diagram (12)

Now applying the functor ( )∗ = hΓ(−,Γ) to the diagram (12) yields the fol-
lowing exact commutative diagram:

0

��

0

��

0

��
0 // TrGM // I∗1 //

��

I∗0 //

��

M∗ //

��

0

0 // TrL // E∗1 //

��

E∗0 //

��

L∗ //

��

0

0 // I ′∗1 //

��

H∗ //

��

I ′∗ //

��

0

0 0 0

Diagram (13)

By the snake lemma, it follows that N = TrGM ∼= TrL, where 0→ I ′ → L→
M → 0 is an exact sequence in MΓ with I ′ Gorenstein injective. �

As an application of Theorem 3.7, we get that the Gorenstein transpose of
a comodule can be decomposed into a direct sum of a transpose of the same
comodule and a Gorenstein injective comodule.

Corollary 3.8. If M ∈ MΓ has finite injective dimension, then TrGM =
TrM ⊕ I, where I is a Gorenstein injective comodule.
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Proof. By Theorem 3.7, we have TrGM = TrL for some right Γ-comodule
L, and there is an exact sequence 0 → I → L → M → 0 in MΓ with I
Gorenstein injective. The finiteness of injective dimension of M implies that
Ext1Γ(M, I) = 0 from Theorem 3.5 in [1], which means that the sequence above
is split. Hence L = I⊕M , and then TrGM = TrL = TrI⊕TrM by Proposition
2.3, where TrI is a Gorenstein injective comodule by Corollary 3.5. �

Proposition 3.9. If M ∈ MΓ is indecomposable, non-Gorenstein injective
and dimTrGM <∞, then there exists an almost split sequence of the form

0→M → Y → DTrGM → 0

in MΓ.

Proof. By Theorem 3.3, there exists an exact sequence 0 → K → TrM →
TrGM → 0 inMΓop

with K Gorenstein injective. Since M is indecomposable,
not Gorenstein injective and dimTrGM <∞, it follows that there is an almost
split sequence 0→M → X → DTrM → 0 inMΓ by Theorem 4.2 in [4]. Thus
we obtain the following pull-back diagram:

0

��

0

��
M

��

M

��
0 // Y //

f

��

X //

h

��

DK // 0

0 // DTrGM //

��

DTrM //

��

DK // 0

0 0

Then the first column is the desired sequence. In fact, since M is indecompos-
able, we only need to show that the morphism f : Y → DTrGM is right almost
split. It is easy to know that the exact sequence 0→M → Y → DTrGM → 0
does not split, since the exact sequence 0→M → X → DTrM → 0 is almost
split sequence. Since h : X → DTrM is right almost split, it follows that for
every nonisomorphism g : Z → DTrM with Z indecomposable factors through
h and then Ext1Γ(Z,M) = 0. Thus g′ : Z → DTrGM factors through f . So we
have that f : Y → DTrGM is right almost split. �
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