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WEIGHTED ESTIMATES FOR CERTAIN ROUGH

OPERATORS WITH APPLICATIONS TO

VECTOR VALUED INEQUALITIES

Feng Liu and Qingying Xue

Abstract. Under certain rather weak size conditions assumed on the
kernels, some weighted norm inequalities for singular integral operators,

related maximal operators, maximal truncated singular integral opera-

tors and Marcinkiewicz integral operators in nonisotropic setting will be
shown. These weighted norm inequalities will enable us to obtain some

vector valued inequalities for the above operators.

1. Introduction

Over the last several years an active topic of research is to investigate the
weighted norm inequalities for various of integral operators, such as Hardy-
Littlewood maximal operator, rough singular integral operators and so on. A
classic example was due to Fefferman and Stein [14], who showed that∫

Rn
(Mf(x))pu(x)dx ≤ Cp

∫
Rn
|f(x)|pMu(x)dx,

holds for all 1 < p < ∞ and any weight function u. Here M is the usual
Hardy-Littlewood maximal operator on Rn. As an immediate application of
the above weighted inequality, the following vector valued inequality for M is
valid:∥∥∥(∑

j∈Z
(Mfj)

p
)1/p∥∥∥

Lq(Rn)
≤ Cp,q

∥∥∥(∑
j∈Z
|fj |p

)1/p∥∥∥
Lq(Rn)

, 1 < p < q <∞.

The primary motivation of this paper is to establish certain weighted norm
inequalities for singular integral operators, related maximal operators and trun-
cated singular integral operators as well as Marcinkiewicz integral operators in
nonisotropic setting when their integral kernels are given by Ω ∈ Lq(Σ) and
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1036 F. LIU AND Q. XUE

h ∈ ∆γ(R+) for some q, γ ∈ (1,∞]. The above weighted norm inequalities will
enable us to obtain some vector valued inequalities for the above operators.

We now recall some notations and background. Let n ≥ 2 and Rn be the
n-dimensional Euclidean space with a non-isotropic dilation. Precisely, let P
be an n × n real matrix whose eigenvalues have positive real parts and let
α = tracP . Define a dilation group {At}t>0 on Rn by At = tP = exp((log t)P ).
There is a non-negative function r on Rn associated with {At}t>0. The function
r is continuous on Rn and infinitely differentiable in Rn \ {0}; furthermore it
satisfies:

(a) r(Atx) = tr(x) for all t > 0 and x ∈ Rn;
(b) r(x+ y) ≤ C(r(x) + r(y)) for some C > 0;
(c) if Σ = {x ∈ Rn | r(x) = 1}, then Σ = {θ ∈ Rn | 〈Bθ, θ〉 = 1} for a positive

symmetric matrix B, where 〈·, ·〉 denotes the inner product in Rn; And then,
the Lebesgue measure can be written as dx = tα−1dσdt, that is,∫

Rn
f(x)dx =

∫ ∞
0

∫
Σ

f(Atθ)t
α−1dσ(θ)dt

for appropriate functions f , where dσ is a C∞ measure on Σ.
(d) there are positive constants c1, c2, c3, c4, α1, α2, β1 and β2 such that

c1|x|α1 ≤ r(x) ≤ c2|x|α2 if r(x) ≥ 1,

c3|x|β1 ≤ r(x) ≤ c4|x|β2 if r(x) ≤ 1.

See [20, 24] for more details. Let Ω be a locally integrable function and homo-
geneous of degree 0 with respect to the dilation group {At}, that is, Ω(Atx) =
Ω(x) for x 6= 0. Assume that

(1)

∫
Σ

Ω(θ)dσ(θ) = 0.

We consider a singular integral operator Th,Ω by

Th,Ωf(x) := p.v.

∫
Rn
f(x− y)

Ω(y′)h(r(y))

r(y)α
dy,

where y′ = Ar(y)−1y, f ∈ S(Rn) (the Schwartz class on Rn) and h ∈ ∆1(R+).
Here ∆γ(R+) (γ ≥ 1) denotes the collection of measurable functions h on R+ :=
(0,∞) satisfying

‖h‖∆γ(R+) := sup
R>0

( 1

R

∫ R

0

|h(t)|γdt
)1/γ

<∞.

It is easy to check that L∞(R+) = ∆∞(R+) and ∆γ1(R+) ⊂ ∆γ2(R+) for
any 1 ≤ γ2 < γ1 < ∞, which is a proper inclusion. In addition, we also
consider the related maximal functions, maximal truncated singular integrals
and Marcinkiewicz integrals. To be precise, we define the maximal functions
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Mh,Ω and maximal truncated singular integral operator T ∗h,Ω by

Mh,Ωf(x) = sup
t>0

1

tα

∫
r(y)<t

|f(x− y)||Ω(y′)h(r(y))|dy,

T ∗h,Ωf(x) = sup
ε>0

∣∣∣ ∫
r(y)>ε

f(x− y)
Ω(y′)h(r(y))

r(y)α
dy
∣∣∣.

The parametric Marcinkiewicz integral operator Mh,Ω,% is defined as

Mh,Ω,%f(x) =
(∫ ∞

0

∣∣∣ 1

t%

∫
r(y)≤t

f(x− y)
Ω(y′)h(r(y))

r(y)α−ρ
dy
∣∣∣2 dt
t

)1/2

,

where % = τ + iϑ (τ, ϑ ∈ R with τ > 0).
When At = tE with E being the identity matrix and r(x) = |x|, then Σ

reduces to the unit sphere in Rn denoted by Sn−1 and we denote Th,Ω = T̃h,Ω.

When h ≡ 1, the operator T̃h,Ω recovers the classical singular integral operator

T̃Ω, which was initiated in the seminal work of Calderón and Zygmund [6]. A
celebrated work was due to Calderón and Zygmund [7] who established the

Lp boundedness for T̃Ω with 1 < p < ∞ if Ω ∈ L logL(Sn−1) by introducing
the “method of rotations”. A discovery that the Calderón-Zygmund rotation
method is no longer to be available if the operator T̃h,Ω is also rough in the

radial direction was given by R. Fefferman [13] who proved that T̃h,Ω is bounded
on Lp(Rn) for all p ∈ (1,∞) if Ω ∈ Lipα(Sn−1) for some α > 0 and h ∈
L∞(R+). Later on, J. Namazi [19] improved Fefferman’s result to the case
Ω ∈ Lq(Sn−1) for some q > 1. Subsequently, J. Duoandikoetxea and J. L.
Rubio de Francia [11] used the Littlewood-Paley theory to improve the above
radial kernel condition h ∈ L∞(R+) to the case h ∈ ∆2(R+). Since then, the
above results have been improved and extended by many authors (see [2, 12]).
For the nonisotropic singular integrals, we can consult [5, 20–22, 24], among
others. Particularly, Sato [22] proved the following result.

Theorem A ([22]). Let Ω ∈ Lq(Σ) satisfy (1) and h ∈ ∆γ(R+) for some
q, γ ∈ (1, 2]. Then

‖Th,Ωf‖Lp(Rn) ≤ Cp(q − 1)−1(γ − 1)−1‖h‖∆γ(R+)‖Ω‖Lq(Σ)‖f‖Lp(Rn)

for all p ∈ (1,∞), where the constant Cp > 0 is independent of h,Ω, q, γ.

Here Lq(Σ) for q > 1 denote as the space of all those functions Ω on Σ which
satisfy ‖Ω‖q = (

∫
Σ
|Ω(θ)|qdσ(θ))1/q <∞.

When At = tE with E being the identity matrix and r(x) = |x| (the Eu-
clidean norm), then Mh,Ω,% reduces to the classic parametric Marcinkiewicz
integral operator, which was initiated in the seminal work of E. M. Stein [23]
for ρ ≡ h ≡ 1 and has been studied by many authors (see [1, 3, 8, 10, 25, 26]).
We can consult [18] for the nonisotropic Marcinkiewicz integral operators.

The primary purpose of this paper is to establish some weighted norm in-
equalities for the operators Th,Ω, T

∗
h,Ω, Mh,Ω and Mh,Ω,% when their integral
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kernels are given by Ω ∈ Lq(Σ) and h ∈ ∆γ(R+) for some q, γ ∈ (1,∞]. Our
main results can be formulated as follows:

Theorem 1.1. Let Ω ∈ Lq(Σ) satisfy (1) and h ∈ ∆γ(R+) for some q, γ ∈
(1,∞].

(i) Let p ∈ [2,∞). Then for any nonnegative measurable function u on Rn
and s > 1, the following inequality holds:

(2) ‖Th,Ωf‖Lp(u) ≤ Ch,Ω,q,γ,p,s‖f‖Lp(MsM σ̃
s Msu).

(ii) Let 1 < p < 2 and {tk}k∈N be a sequence of positive numbers satisfying

t1 =
2

p
,

1

tk+1
=

1

tk
+
p

2

(
1− 1

tk

)
, k = 1, 2, . . . .

Then for any nonnegative measurable function u on Rn and any fixed k ∈ N
and s > tk, the following inequality holds:

(3) ‖Th,Ωf‖Lp(u) ≤ Ch,Ω,q,γ,p,s‖f‖Lp(MsM σ̃
s u+M2

su).

Here M denotes the Hardy-Littlewood maximal operator with respect to the func-
tion r(·). For s > 1, Msu = (Mus)1/s, M σ̃

s (u) = (M σ̃us)1/s, M σ̃f(x) =
supk∈Z ||σ̃k| ∗ f(x)|, where |σ̃k| is defined by∫

Rn
f(x)d|σ̃k|(x) =

∫
2k−1<r(y)≤2k

f(−y)
|Ω(y′)h(r(y))|

r(y)α
dy.

Theorem 1.2. Let Ω ∈ Lq(Σ) satisfy (1) and h ∈ ∆γ(R+) for some q, γ ∈
(1,∞].

(i) Let p ∈ [2,∞). Then for any nonnegative measurable function u on Rn
and s > 1, the following inequality holds:

(4) ‖Mh,Ωf‖Lp(u) ≤ Ch,Ω,q,γ,p,s‖f‖Lp(MsM σ̃
s u+M2

su).

(ii) Let p ∈ (1, 2) and {tk}k be given as in (ii) of Theorem 1.1. Then for any
nonnegative measurable function u on Rn and any fixed k ∈ N and s > tk, the
following inequality holds:

(5) ‖Mh,Ωf‖Lp(u) ≤ Ch,Ω,q,γ,p,s‖f‖Lp(MsM σ̃
s u+M2

su).

Here Mk denotes the Hardy-Littlewood maximal operator M iterated k times
for all k ∈ N and M2

su = (M2us)1/s.

Theorem 1.3. Let Ω ∈ Lq(Σ) satisfy (1) and h ∈ ∆γ(R+) for some q, γ ∈
(1,∞].

(i) Let p ∈ [2,∞). Then for any nonnegative measurable function u on Rn
and s > 1, the following inequality holds:

(6) ‖T ∗h,Ωf‖Lp(u) ≤ Ch,Ω,q,γ,p,s‖f‖Lp(MsM σ̃
s Msu+M3

su).

(ii) Let p ∈ (1, 2) and {tk}k be given as in (ii) of Theorem 1.1. Then for any
nonnegative measurable function u on Rn and any fixed k ∈ N and s > tk, the
following inequality holds:

(7) ‖T ∗h,Ωf‖Lp(u) ≤ Ch,Ω,q,γ,p,s‖f‖Lp(MsM σ̃
s Msu+M3

su).
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Theorem 1.4. Let Ω ∈ Lq(Σ) satisfy (1) and h ∈ ∆γ(R+) for some q, γ ∈
(1,∞]. Then for any nonnegative measurable function u on Rn, s > 1 and
p ∈ (1,∞), the following inequality holds:

(8) ‖Mh,Ω,%f‖Lp(u) ≤ Ch,Ω,q,γ,%,p,s‖f‖Lp(MsM σ̃
s Msu).

As applications of Theorems 1.1-1.4, we can get the following vector valued
inequalities for the above operators, which are listed as follows:

Corollary 1.5. Let Ω ∈ Lq(Σ) satisfy (1) and h ∈ ∆γ(R+) for some q, γ ∈
(1,∞]. Then for 1 < p, p̃ <∞, the following inequality holds:

(9)
∥∥∥(∑

j∈Z
|Th,Ωfj |p̃

)1/p̃∥∥∥
Lp(Rn)

≤ Ch,Ω,q,γ,p,p̃
∥∥∥(∑

j∈Z
|fj |p̃

)1/p̃∥∥∥
Lp(Rn)

.

Corollary 1.6. Let Ω ∈ Lq(Σ) satisfy (1) and h ∈ ∆γ(R+) for some q, γ ∈
(1,∞]. Then for 1 < p̃ ≤ p <∞, the following inequality holds:

(10)
∥∥∥(∑

j∈Z
|T ∗h,Ωfj |p̃

)1/p̃∥∥∥
Lp(Rn)

≤ Ch,Ω,q,γ,p,p̃
∥∥∥(∑

j∈Z
|fj |p̃

)1/p̃∥∥∥
Lp(Rn)

.

The same results hold for the operator Mh,Ω and Mh,Ω,%.

Remark 1.7. It was shown in [22] that both T ∗h,Ω and Mh,Ω are bounded on

Lp(Rn) if h, Ω satisfy the conditions of Theorem 1.1. The same conclusion also
holds for Mh,Ω,% (see [18]).

Remark 1.8. Our main results are new even in the special case h(t) ≡ 1.

The rest of this paper is organized as follows. Section 2 contains some
preliminary notations and lemmas, which are the basis of our proofs. In Section
3 we shall prove Theorems 1.1-1.4. The proofs of Corollaries 1.5 and 1.6 will
be presented in Section 4. It should be pointed out that the main idea in
the proofs of our main results is a combination of ideas and arguments from
[15,17,18,22]. The main tools of our proofs are the weighted Littlewood-Paley
theory followed from [15] and some iteration arguments, which are originated
from [11] and developed in [15,17].

Throughout this note, for any p ∈ (1,∞), let p′ denote the dual exponent to

p defined as 1/p+ 1/p′ = 1. For any function f , we define f̃ by f̃(x) = f(−x).
For f ∈ Lp(u), we set

‖f‖Lp(u) =
(∫

Rn
|f(x)|pu(x)dx

)1/p

.

2. Some notations and lemmas

Following the notation in [22], let P ∗ denote the adjoint of the matrix P .
Then A∗t = exp((log t)P ∗). We can define a non-negative function s from {A∗t }
exactly in the same way as we define r from {At}. It was shown in [24] that

(11) d1|ξ|a1 < s(ξ) < d2|ξ|a2 , if s(ξ) ≥ 1;
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(12) d3|ξ|b1 < s(ξ) < d4|ξ|b2 , if 0 < s(ξ) ≤ 1,

where dj (j = 1, 2, 3, 4), ak, bk (k = 1, 2) are positive constants. From (11) and
(12) we have that there exist two positive constants C1, C2 such that

(13) |ξ| ≤ C1(s(ξ)1/a1 + s(ξ)1/b1),

(14) |ξ|−1 ≤ C2(s(ξ)−1/a2 + s(ξ)−1/b2).

For k ∈ Z, we define the measures σk and |σk| respectively by

(15) σ̂k(x) =

∫
2k−1<r(y)≤2k

exp(−2πiy · x)
Ω(y′)h(r(y))

r(y)α
dy,

(16) |̂σk|(x) =

∫
2k−1<r(y)≤2k

exp(−2πiy · x)
|Ω(y′)h(r(y))|

r(y)α
dy.

To estimate some measures, we need the following estimate of oscillatory
integral, which follows from [22, Corollary 4.2].

Lemma 2.1. ([22]) Let L be the degree of the minimal polynomial of P and
Ψ ∈ C1([a, b]) with 0 < a < b. Then for ξ, η ∈ Rn \ {0}, there exists a constant
C > 0 independent of ξ, η and Ψ such that∣∣∣ ∫ b

a

exp(iη ·Atξ)Ψ(t)dt
∣∣∣ ≤ C|η · Pξ|−1/L

(
sup
t∈[a,b]

|Ψ(t)|+
∫ b

a

|Ψ′(t)|dt
)
.

Applying Lemma 2.1, we have:

Lemma 2.2. Let Ω satisfy (1). Suppose that Ω ∈ Lq(Σ) for some q ∈ (1,∞)
and h ∈ ∆γ(R+) for some γ ∈ (1,∞). Then for all k ∈ Z, there exists a
constant C > 0 independent of h,Ω, q, γ such that

(17) max
{
|σ̂k(ξ)|,

∣∣|̂σk|(ξ)−|̂σk|(0)
∣∣} ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗2kξ|

1/(4q′γ′L);

(18) max
{
|σ̂k(ξ)|,

∣∣|̂σk|(ξ)∣∣}≤C‖h‖∆γ(R+)‖Ω‖Lq(Σ) min{1, |A∗2kξ|
−1/(4q′γ′L)}.

Proof. By a change of variables and Hölder’s inequality, we get

(19)

max{|σ̂k(ξ)|, ||̂σk|(ξ)|} ≤
∫

2k−1<r(y)≤2k

|Ω(y′)h(r(y))|
r(y)α

dy

=

∫ 2k

2k−1

∫
Σ

|Ω(θ)|dσ(θ)
|h(u)|
u

du

≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ).
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By a change of variables, (1) and Hölder’s inequality, one has

|σ̂k(ξ)| =
∣∣∣ ∫ 2k

2k−1

∫
Σ

(exp(−2πiξ ·Auθ)− 1)Ω(θ)dσ(θ)
h(u)

u
du
∣∣∣

≤ C
∫ 2k

2k−1

∫
Σ

|Ω(θ)||ξ ·Auθ|dσ(θ)|h(u)|du
u

≤ C‖h‖∆γ(R+)

(∫ 2k

2k−1

∣∣∣ ∫
Σ

|Ω(θ)||ξ ·Auθ|dσ(θ)
∣∣∣γ′ du

u

)1/γ′

≤ C‖h‖∆γ(R+)

(∫ 1

1/2

∣∣∣ ∫
Σ

|Ω(θ)||A∗2kξ ·Auθ|dσ(θ)
∣∣∣γ′ du

u

)1/γ′

≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗2kξ|,
which together with (19) implies that

(20) |σ̂k(ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗2kξ|
1/(4q′γ′L).

Similarly, we can get

(21)
∣∣|̂σk|(ξ)− |̂σk|(0)

∣∣ ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗2kξ|
1/(4q′γ′L).

Combining (21) with (20) yields (17).
On the other hand, by a change of variables and Hölder’s inequality,

(22)

|σ̂k(ξ)|

=
∣∣∣ ∫ 2k

2k−1

∫
Σ

exp(−2πiξ ·Auθ)Ω(θ)dσ(θ)
h(u)

u
du
∣∣∣

≤
∫ 2k

2k−1

∣∣∣ ∫
Σ

exp(−2πiξ ·Auθ)Ω(θ)dσ(θ)
∣∣∣|h(u)|du

u

≤ C‖h‖∆γ(R+)

(∫ 2k

2k−1

∣∣∣ ∫
Σ

exp(−2πiξ ·Auθ)Ω(θ)dσ(θ)
∣∣∣γ′ du

u

)1/γ′

≤ C‖h‖∆γ(R+)‖Ω‖
max{0,1−2/γ′}
Lq(Σ)

×
(∫ 2k

2k−1

∣∣∣ ∫
Σ

exp(−2πiξ ·Auθ)Ω(θ)dσ(θ)
∣∣∣2 du
u

)1/max{2,γ′}
.

Invoking Lemma 2.1 and using Hölder’s inequality, we have∫ 2k

2k−1

∣∣∣ ∫
Σ

exp(−2πiξ ·Auθ)Ω(θ)dσ(θ)
∣∣∣2 du
u

=

∫ 2k

2k−1

∫∫
Σ×Σ

exp(−2πiA∗uξ · (θ − w))Ω(θ)Ω(w)dσ(θ)dσ(w)
du

u

=

∫ 1

1/2

∫∫
Σ×Σ

exp(−2πiA∗2kuξ · (θ − w))Ω(θ)Ω(w)dσ(θ)dσ(w)
du

u
(23)

≤
∫∫

Σ×Σ

∣∣∣ ∫ 1

1/2

exp(−2πiA∗2kξ ·Au(θ − w))
du

u

∣∣∣
× |Ω(θ)Ω(w)|dσ(θ)dσ(w)
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≤ C
∫∫

Σ×Σ

|A∗2kξ · P (θ − w))|−ε|Ω(θ)Ω(w)|dσ(θ)dσ(w)

≤ C‖Ω‖2Lq(Σ)

(∫∫
Σ×Σ

|P ∗A∗2kξ · (θ − w)|−εq
′
dσ(θ)dσ(w)

)1/q′

≤ C‖Ω‖2Lq(Σ)|A
∗
2kξ|

−ε,

for any 0 < ε < min{1/(2q′), 1/L}, where the last inequality follows from [11, p.
553] (see also [22, p. 418]). In light of (22) and (23) we would have

(24) |σ̂k(ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗2kξ|
−1/(2q′max{2,γ′}L).

Similarly, we have

(25)
∣∣|̂σk|(ξ)∣∣ ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗2kξ|

−1/(2q′max{2,γ′}L).

Combining (25) with (24) and (19) implies (18). �

The following result is an application of iteration argument followed from
[11], which will play a key role in the proofs of our main results.

Lemma 2.3. Let h, Ω be given as in Lemma 2.2. Then, for all p ∈ (1,∞), it
holds that

(26) ‖Mσf‖Lp(Rn) ≤ Ch,Ω,q,γ,p‖f‖Lp(Rn).

Proof. Let ψ be a nonnegative C∞0 (Rn) function such that supp(ψ) ⊂ {x ∈
Rn : s(x) ≤ 1} and ψ(t) ≡ 1 when s(x) < 1/2. For k ∈ Z, we define the

function ψk(x) = 2−kαψ∨(A2−kx). It is clear that ψ̂k(x) = ψ(A∗2kx). Define
the measures {νk}k by

(27) νk(ξ) = |σk|(ξ)− ψk(ξ)|̂σk|(0).

Applying Lemma 2.2 and (13)-(14), we get

(28)
|ν̂k(ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)

×
(
(2ks(ξ))1/(4q′γ′a1L) + (2ks(ξ))1/(4q′γ′b1L)

)
;

(29)
|ν̂k(ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)

×min
{

1, (2ks(ξ))−1/(4q′γ′a2L) + (2ks(ξ))−1/(4q′γ′b2L)
}
,

where C > 0 is independent of h,Ω, q, γ. Moreover, it is easy to verify that

(30) Mσf ≤ Gν(f) + |̂σk|(0)M|f |,

(31) Mνf ≤Mσf + |̂σk|(0)M|f |,
where Mνf = supk∈Z ||νk| ∗ f | and Gν(f) = (

∑
k∈Z |νk ∗ f |2)1/2. Applying the

Lp boundedness of M, we get

(32) ‖Mf‖Lp(Rn) ≤ C‖f‖Lp(Rn)

for all p ∈ (1,∞). A standard iteration argument from [11] together with
(28)-(32) may yield (26). The details are omitted. �
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3. Proofs of Theorems 1.1-1.4

This section is devote to proving Theorems 1.1-1.4. In what follows, we fix
a nonnegative measurable function u on Rn.

Proof of Theorem 1.1. We split the proof into two steps:
Step 1: Proof of part (i). Let {σk}k be defined as in (15). We define the

maximal operator M σ̃ by

M σ̃f(x) = sup
k∈Z

∣∣|σ̃k| ∗ f(x)
∣∣,

where ∫
Rn
f(x)d|σ̃k|(x) =

∫
Rn
f(−x)d|σk|(x).

One can easily verify that

(33) M σ̃f(x) = Mσ f̃(x);

(34) Th,Ωf(x) =
∑
k∈Z

σk ∗ f(x).

Let Ψ ∈ C∞c ((1/4, 1)) such that 0 ≤ Ψ ≤ 1 and
∑
k∈Z(Ψ(2ks(ξ)))3 = 1

for every ξ ∈ Rn. Define the Fourier multiplier operators {Sk}k by Skf(x) =

Θk ∗ f(x), where Θ̂k(ξ) = Ψ(2ks(ξ)). It was proved in [15] that

(35)
∥∥∥(∑

k∈Z
|Skf |2

)1/2∥∥∥
Lp(w)

≤ Cp,w‖f‖Lp(w)

and

(36)
∥∥∥∑
k∈Z

Skfk

∥∥∥
Lp(w)

≤ Cp,w
∥∥∥(∑

k∈Z
|fk|2

)1/2∥∥∥
Lp(w)

for all p ∈ (1,∞) and w ∈ Ap (the Muckenhoupt weight class).
We can write

(37)

Th,Ωf(x) =
∑
k∈Z

∑
j∈Z

S3
j+k(σk ∗ f)(x)

=
∑
j∈Z

∑
k∈Z

S3
j+k(σk ∗ f)(x) =:

∑
j∈Z

Tjf(x).

Applying Lemma 2.2, we get from (13) and (14) that

(38) |σ̂k(ξ)| ≤ Ch,Ω
(
(2ks(ξ))1/(4q′γ′a1L) + (2ks(ξ))1/(4q′γ′b1L)

)
;

(39) |σ̂k(ξ)| ≤ Ch,Ω min
{

1, (2ks(ξ))−1/(4q′γ′a2L) + (2ks(ξ))−1/(4q′γ′b2L)
}
.

By (38), (39) and Plancherel’s theorem, we have

(40) ‖σk ∗ Sj+kw‖L2(Rn) ≤ Ch,Ω2−δ1|j|‖w‖L2(Rn)

for some δ1 > 0 and any arbitrary function w on Rn. Here δ1 depends on
q, γ, L.
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Fix s > 1. One may get that

(41)

‖σk ∗ Sj+kw‖L2(us)

≤ (‖σk‖‖Θj+k‖L1(Rn))
1/2
(∫

Rn
|σk| ∗ |Θj+k| ∗ |w|2(x)us(x)dx

)1/2

≤ Ch,Ω‖w‖L2(MM σ̃us).

An interpolation of L2-spaces with change of measure ([4, Theorem 5.4.1])
between (40) and (41) implies that

(42) ‖σk ∗ Sj+kw‖L2(u) ≤ Ch,Ω2−δ1(1−1/s)|j|‖w‖L2(MsM σ̃
s u).

Note that MsM
σ̃
s u ∈ A1. By (42) with w = Sj+kf and (36),

(43)

‖Tjf‖L2(u) =
∥∥∥∑
k∈Z

S3
j+kσk ∗ f

∥∥∥
L2(u)

≤ C
(∑
k∈Z
‖σk ∗ S2

j+kf‖2L2(u)

)1/2

≤ Ch,Ω2−δ1(1−1/s)|j|
∥∥∥(∑

k∈Z
|Sj+kf |2

)1/2∥∥∥
L2(MsM σ̃

s u)

≤ Ch,Ω2−δ1(1−1/s)|j|‖f‖L2(MsM σ̃
s u).

We now prove that

(44) ‖Tjf‖Lp(u) ≤ Ch,Ω,s‖f‖Lp(MsM σ̃
s Msu)

for all p ∈ (2,∞). Note that ‖σk‖ ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ). By Lemma 2.3 and
the arguments similar to those used in getting [17, (3.25)], we obtain

(45)
∥∥∥(∑

k∈Z
|σk ∗ gk|2

)1/2∥∥∥
Lp(u)

≤ Ch,Ω,s
∥∥∥(∑

k∈Z
|gk|2

)1/2∥∥∥
Lp(M σ̃

s u)

for all p ∈ (2,∞) and any s > 1. It was noted that u ≤ Msu and Msu ∈ A1

(see [9]). By (35), (36), (45) and the fact M σ̃
s u ≤ MsM

σ̃
s u ∈ A1,

‖Tjf‖Lp(u) =
∥∥∥∑
k∈Z

S3
j+kσk ∗ f

∥∥∥
Lp(u)

≤
∥∥∥∑
k∈Z

S3
j+kσk ∗ f

∥∥∥
Lp(Msu)

≤ Cp
∥∥∥(∑

k∈Z
|σk ∗ S2

j+kf |2
)1/2∥∥∥

Lp(Msu)

≤ Ch,Ω,s,p
∥∥∥(∑

k∈Z
|S2
j+kf |2

)1/2∥∥∥
Lp(M σ̃

s Msu)

≤ Ch,Ω,s,p‖f‖Lp(MsM σ̃
s Msu)

for all p ∈ (2,∞). This proves (44). By an interpolation between (43) and (44)
(see [4, Corollary 5.5.4]) and the fact that u ≤ Msu, we have

(46) ‖Tjf‖Lp(u) ≤ Ch,Ω,s,p2−δ1(1−1/s)|j|‖f‖Lp(MsM σ̃
s Msu)
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for some c > 0. Combining (46) with (37) yields (2) and completes the proof
of part (i).

Step 2: Proof of part (ii). We now prove (3). Let {tk}k be given as in
(ii) of Theorem 1.1. To prove (3), it suffices to show that

(47) ‖Th,Ωf‖Lp(u1/s) ≤ Ch,Ω,q,γ,p,s‖f‖Lp((MM σ̃u+M2u)1/s)

for any fixed k ∈ N, all s > tk and p ∈ (1, 2). Let {νk}k be given as in (27).
By Minkowski’s inequality,

(48)

Gνf =
(∑
k∈Z

∣∣∣νk ∗∑
j∈Z

S3
j+kf

∣∣∣2)1/2

≤
∑
j∈Z

(∑
k∈Z
|νk ∗ S3

j+kf |2
)1/2

=:
∑
j∈Z

Gjf.

It is clear that

(49) ‖νk ∗ f‖L∞(Rn) ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)‖f‖L∞(Rn);

(50) ‖νk ∗ f‖L1(u) ≤ C‖f‖L1(M ν̃u).

An interpolation between (49) and (50) gives us that

(51) ‖νk ∗ f‖Lp(u) ≤ Ch,Ω‖f‖Lp(M ν̃u) ≤ Ch,Ω‖f‖Lp(MM ν̃u)

for all p ∈ (1, 2). From (51) we get

(52)
∥∥∥(∑

k∈Z
|νk ∗ fk|p

)1/p∥∥∥
Lp(u)

≤ Ch,Ω
∥∥∥(∑

k∈Z
|fk|p

)1/p∥∥∥
Lp(MM ν̃u)

for all p ∈ (1, 2). On the other hand, we get from (26), (30) and (31) that

(53) ‖Mνf‖Lp(Rn) ≤ Ch,Ω‖f‖Lp(Rn)

for all p ∈ (1,∞). From (53) we get

(54)
∥∥∥ sup
k∈Z
|νk ∗ fk|

∥∥∥
Lp(Rn)

≤ Ch,Ω
∥∥∥ sup
k∈Z
|fk|
∥∥∥
Lp(Rn)

for all p ∈ (1, 2). An interpolation between (52) and (54) yields that

(55)
∥∥∥(∑

k∈Z
|νk ∗ fk|2

)1/2∥∥∥
Lp(u1/t1 )

≤ Ch,Ω
∥∥∥(∑

k∈Z
|fk|2

)1/2∥∥∥
Lp((MM ν̃u)1/t1 )

for all p ∈ (1, 2), where t1 = 2/p. By Substituting ut1 for u in (55),

(56)
∥∥∥(∑

k∈Z
|νk ∗ fk|2

)1/2∥∥∥
Lp(u)

≤ Ch,Ω
∥∥∥(∑

k∈Z
|fk|2

)1/2∥∥∥
Lp(Mt1

M ν̃
t1
u)
.
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Since Mt1M
ν̃
t1u ∈ A1, we get by the weighted Littlewood-Paley theory and (56)

that

(57)

‖Gjf‖Lp(u) =
∥∥∥(∑

k∈Z
|νk ∗ S3

j+kf |2
)1/2∥∥∥

Lp(u)

≤ Ch,Ω
∥∥∥(∑

k∈Z
|S3
j+kf |2

)1/2∥∥∥
Lp(Mt1

M ν̃
t1
u)

≤ Ch,Ω‖f‖Lp(Mt1M
ν̃
t1
u)

for all p ∈ (1, 2). By substituting u1/t1 for u in (57),

(58) ‖Gjf‖Lp(u1/t1 ) ≤ C‖f‖Lp((MM ν̃u)1/t1 )

for all p ∈ (1, 2). On the other hand, by (28), (29) and the arguments as in
getting (42), we have

(59) ‖νk ∗ Sj+kw‖L2(u) ≤ Ch,Ω2−δ2(1−1/s)|j|‖w‖L2(MsM ν̃
s u)

for some δ2 > 0, any function w and any s > 1. By (59) with w = S2
j+kf and

(35), we obtain

(60)

‖Gjf‖L2(u) =
∥∥∥(∑

k∈Z
|νk ∗ S3

j+kf |2
)1/2∥∥∥

L2(u)

≤
(∑
k∈Z
‖νk ∗ S3

j+kf‖2L2(u)

)1/2

≤ Ch,Ω2−δ2(1−1/s)|j|
∥∥∥(∑

k∈Z
|S2
j+kf |2

)1/2∥∥∥
L2(MsM ν̃

s u)

≤ Ch,Ω2−δ2(1−1/s)|j|‖f‖L2(MsM ν̃
s u).

Take s = t1. By substituting u1/t1 for u in (60),

(61) ‖Gjf‖L2(u1/t1 ) ≤ Ch,Ω2−δ2(1−1/t1)|j|‖f‖L2((MM ν̃u)1/t1 ).

By an interpolation between (61) and (58), we obtain

(62) ‖Gjf‖Lp(u1/t1 ) ≤ Ch,Ω2−δ2(1−1/t1)|j|‖f‖Lp((MM ν̃u)

for all p ∈ (1, 2]. Combining (62) with (48) yields that

(63) ‖Gνf‖Lp(u1/t1 ) ≤ Ch,Ω,q,γ,p‖f‖Lp((MM ν̃u)1/t1 )

for all p ∈ (1, 2]. By the well-known Fefferman-Stein inequality for M,

(64) ‖Mf‖Lp(u) ≤ Cp‖f‖Lp(Mu)

for all p ∈ (1,∞). It follows from (63), (64), (30) and (19) that

(65)
‖Mσf‖Lp(u1/t1 ) ≤ ‖Gνf‖Lp(u1/t1 ) + |̂σk|(0)‖M|f |‖Lp(u1/t1 )

≤ Ch,Ω,q,γ,p(‖f‖Lp((MM ν̃u)1/t1 ) + ‖f‖Lp(Mu1/t1 ))

≤ Ch,Ω,q,γ,p‖f‖Lp((MM ν̃u+Mu)1/t1 )
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for all p ∈ (1, 2]. Inequalities (65) together with (31), (19) and (64) imply that

(66)

∥∥∥ sup
k∈Z
|νk ∗ f |

∥∥∥
Lp(u1/t1 )

≤ ‖Mν |f |‖Lp(u1/t1 )

≤ Ch,Ω,q,γ,p‖f‖Lp((MM ν̃u+Mu)1/t1 )

for all p ∈ (1, 2]. An interpolation between (52) and (66) yields that

(67)

∥∥∥(∑
k∈Z
|νk ∗ fk|2

)1/2∥∥∥
Lp(u1/t2 )

≤ Ch,Ω,q,γ,p
∥∥∥(∑

k∈Z
|fk|2

)1/2∥∥∥
Lp((MM ν̃u+Mu)1/t2 )

for all p ∈ (1, 2], where 1
t2

= 1
t1

+ p
2 (1− 1

t1
). Inequality (67) together with the

arguments similar to those used in deriving (65) yields that

(68) ‖Mσf‖Lp(u1/t2 ) ≤ Ch,Ω,q,γ,p‖f‖Lp((MM ν̃u+Mu)1/t2 )

for all p ∈ (1, 2]. By using the above argument repeatedly, there exists a strictly
decreasing sequence {tk}k∈N by the recursion formula

t1 =
2

p
,

1

tk+1
=

1

tk
+
p

2

(
1− 1

tk

)
, k = 1, 2, . . .

such that

(69) ‖Mσf‖Lp(u1/tk ) ≤ Ch,Ω,q,γ,p‖f‖Lp((MM ν̃u+Mu)1/tk )

for all p ∈ (1, 2] and all k ∈ N. It follows from (69), (19) and (31) that

(70) ‖Mσf‖Lp(u1/tk ) ≤ Ch,Ω,q,γ,p‖f‖Lp((MM σ̃u+M2u)1/tk )

for all p ∈ (1, 2] and all k ∈ N. Then (47) follows from (70) and the lemma in
[27, p. 1574]. �

Proof of Theorem 1.2. We spit the proof into two parts:
Step 1: Proof of part (i). One can easily check that

(71) Mh,Ωf(x) ≤ CMσf(x).

Hence, inequality (4) reduces to the following

(72) ‖Mσf‖Lp(u) ≤ Ch,Ω,q,γ,p‖f‖Lp(MsM σ̃
s u+M2

su)

for all p ∈ [2,∞) and s > 1. By the arguments similar to those used in deriving
(45),

(73)
∥∥∥(∑

k∈Z
|νk ∗ gk|2

)1/2∥∥∥
Lp(u)

≤ Ch,Ω
∥∥∥(∑

k∈Z
|gk|2

)1/2∥∥∥
Lp(M ν̃

s u)
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for all p ∈ (2,∞) and any s > 1. An application of the weighted Littlewood-
Paley theory together with (73) and the fact that MsM

ν̃
s u ∈ A1 implies that

(74)

‖Gjf‖Lp(u) =
∥∥∥(∑

k∈Z
|νk ∗ S3

j+kf |2
)1/2∥∥∥

Lp(u)

≤ Ch,Ω
∥∥∥(∑

k∈Z
|S3
j+kf |2

)1/2∥∥∥
Lp(MsM ν̃

s u)

≤ Ch,Ω‖f‖Lp(MsM ν̃
s u)

for all p ∈ (2,∞) and any s > 1. An interpolation between (60) and (74) (see
[4, Corollary 5.5.4]) implies that

(75) ‖Gjf‖Lp(u) ≤ Ch,Ω2−δ2(1−1/s)|j|‖f‖Lp(MsM ν̃
s u)

for all p ∈ [2,∞) and any s > 1. Inequality (75) together with (48) yields that

‖Gνf‖Lp(u) ≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM ν̃
s u)

for all p ∈ [2,∞) and s > 1. Above inequality together with (19) and (31)
yields that

(76) ‖Gνf‖Lp(u) ≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s u+M2

su)

for all p ∈ [2,∞) and s > 1. Combining (30) with (19), (64) and (76) yields
that

‖Mσf‖Lp(u) ≤ ‖Gνf‖Lp(u) + C‖M|f |‖Lp(u) ≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s u+M2

su)

for all p ∈ [2,∞) and s > 1. This proves (72).
Step 2: Proof of part (ii). Fix k ∈ N. Substitute utk for u in (70) and

by Hölder’s inequality, one finds

(77)
‖Mσf‖Lp(u) ≤ Ch,Ω,q,γ,p‖f‖Lp((MM σ̃utk+M2utk )1/tk )

≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s u+M2

su)

for all p ∈ (1, 2] and s > tk. Combining (77) with (71) yields (5). This
completes the proof of Theorem 1.2. �

Proof of Theorem 1.3. We divide the proof into two steps:
Step 1: Proof of part (i). We write

(78) T ∗h,Ωf(x) ≤Mσ|f |(x) + sup
k∈Z

∣∣∣ ∞∑
j=k

σj ∗ f(x)
∣∣∣.

Hence, to prove (6), by (72), (78) and the fact that u ≤ Msu for all s > 1, it
suffices to show that

(79)
∥∥∥ sup
k∈Z

∣∣∣ ∞∑
j=k

σk ∗ f
∣∣∣∥∥∥
Lp(u)

≤ C‖f‖Lp(MsM σ̃
s Msu+M3

su)



WEIGHTED ESTIMATES FOR CERTAIN ROUGH OPERATORS 1049

for all p ∈ [2,∞) and any s > 1. It is easy to see that

(80)

sup
k∈Z

∣∣∣ ∞∑
j=k

σj ∗ f(x)
∣∣∣

= sup
k∈Z

∣∣∣ψk ∗ Th,Ωf(x)− ψk ∗
k∑

j=−∞
σj ∗ f(x)

+(δ − ψk) ∗
∞∑

j=k+1

σj ∗ f(x)
∣∣∣

≤ sup
k∈Z
|ψk ∗ Th,Ωf(x)|+ sup

k∈Z

∣∣∣ψk ∗ k∑
j=−∞

σj ∗ f(x)
∣∣∣

+ sup
k∈Z

∣∣∣(δ − ψk) ∗
∞∑

j=k+1

σj ∗ f(x)
∣∣∣

=: I1f(x) + I2f(x) + I3f(x),

where ψk is given as in (27) and δ is the Dirac-Delta.
For I1f , we get from (2) and (64) that

(81)
‖I1f‖Lp(u) ≤ ‖M(Th,Ωf)‖Lp(u)

≤ Cp‖Th,Ωf‖Lp(Mu) ≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s Mu)

for all p ∈ [2,∞) and s > 1.
For I2f , we can write

I2f(x) = sup
k∈Z

∣∣∣ ∞∑
j=0

ψk ∗ σk−j ∗ f(x)
∣∣∣ ≤ ∞∑

j=0

sup
k∈Z
|ψk ∗ σk−j ∗ f(x)| =:

∞∑
j=0

Hjf(x).

It follows that

(82) ‖I2f‖Lp(u) ≤
∞∑
j=0

‖Hjf‖Lp(u)

for all p ∈ (1,∞). By (64) and (72), we obtain

(83)
‖Hjf‖Lp(u) ≤ ‖MMσ|f |‖Lp(u)

≤ Cp‖Mσ|f |‖Lp(Mu)

≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s Msu+M3

su)

for all p ∈ [2,∞) and s > 1. By (38) and Plancherel’s theorem,

‖Hjf‖L2(Rn) ≤
∥∥∥(∑

k∈Z
|ψk ∗ σk−j ∗ f |2

)1/2∥∥∥
L2(Rn)

≤
(∑
k∈Z

∫
{2ks(ξ)≤1}

|σ̂k−j(ξ)|2|f̂(ξ)|2dξ
)1/2

(84)

≤ C
(∫

Rn

∑
k∈Z
|σ̂k−j(ξ)|2χ{2ks(ξ)≤1}|f̂(ξ)|2dξ

)1/2
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≤ Ch,Ω2−cj
(

sup
ξ∈Rn

∑
k∈Z

((2ks(ξ))1/(2q′γ′a1L)

+ (2ks(ξ))1/(2q′γ′b1L))χ{2ks(ξ)≤1}

)1/2

‖f‖L2(Rn)

≤ Ch,Ω,q,γ2−cj‖f‖L2(Rn),

for some c > 0, where in the last inequality we have used the properties of
lacunary sequence. On the other hand, by (83) with p = 2 and substitute us

for u in (83), we get

(85) ‖Hjf‖L2(us) ≤ Ch,Ω,q,γ,s,p‖f‖L2(MsM σ̃
s Msus+M3

su
s)

for s > 1. By interpolating between (84) and (85), we get

(86) ‖Hjf‖L2(u) ≤ Ch,Ω,q,γ,s,p2−(1−1/s)cj‖f‖L2(Ms2M
σ̃
s2

Ms2u+M3
s2
u)

for s > 1. Substitute s2 for s in (86), we have

(87) ‖Hjf‖L2(u) ≤ Ch,Ω,q,γ,s,p2−(1−1/
√
s)cj‖f‖L2(MsM σ̃

s Msu+M3
su)

for s > 1. An interpolation between (83) and (87) (see [4, Corollary 5.5.4])
yields

(88) ‖Hjf‖Lp(u) ≤ Ch,Ω,q,γ,s,p2−ς(p,s)j‖f‖Lp(MsM σ̃
s Msu+M3

su),

for all p ∈ [2,∞) and s > 1, where ς(p, s) > 0. Inequality (88) together with
(82) yields that

(89) ‖I2f‖Lp(u) ≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s Msu+M3

su)

for all p ∈ [2,∞) and s > 1.
Finally we estimate I3f . It is easy to see that

I3f(x) = sup
k∈Z

∣∣∣ ∞∑
j=1

(δ − ψk) ∗ σk+j ∗ f(x)
∣∣∣

≤
∞∑
j=1

sup
k∈Z
|(δ − ψk) ∗ σk+j ∗ f(x)| =:

∞∑
j=1

Jjf(x).

It follows that

(90) ‖I3f‖Lp(u) ≤
∞∑
j=1

‖Jjf‖Lp(u)

for all p ∈ (1,∞). By the argument similar to those used in deriving (83),

(91) ‖Jjf‖Lp(u) ≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s Msu+M3

su)

for all p ∈ [2,∞) and s > 1.
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On the other hand, by (39) and the Plancherel theorem,

(92)

‖Jjf‖L2(Rn)

≤
∥∥∥(∑

k∈Z
|(δ − ψk) ∗ σj+k ∗ f |2

)1/2∥∥∥
L2(Rn)

≤
(∑
k∈Z

∫
{2ks(ξ)≥1}

|σ̂j+k(ξ)|2|f̂(ξ)|2dξ
)1/2

≤
(∑
k∈Z

k∑
i=−∞

∫
{2−i≤s(ξ)≤2−i+1}

|σ̂j+k(ξ)|2|f̂(ξ)|2dξ
)1/2

≤ C
(∑
k∈Z

k∑
i=−∞

2−c(j+k−i)
∫
{2−i≤s(ξ)≤2−i+1}

|f̂(ξ)|2dξ
)1/2

≤ Ch,Ω2−cj
(∑
k∈Z

∞∑
i=0

2−ci
∫
{2k−i≤s(ξ)≤2k−i+1}

|f̂(ξ)|2dξ
)1/2

≤ Ch,Ω2−cj‖f‖L2(Rn).

By (91), (92) and the arguments similar to those used to derive (88),

(93) ‖Jjf‖Lp(u) ≤ Ch,Ω,q,γ,s,p2−τ(p,s)j‖f‖Lp(MsM σ̃
s Msu+M3

su)

for all p ∈ [2,∞) and s > 1, where τ(p, s) > 0. Combining (93) with (90) yields
that

(94) ‖I3f‖Lp(u) ≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s Msu+M3

su),

for all p ∈ [2,∞) and s > 1. (80) together with (81), (89) and (94) yields (79).
Step 2: Proof of part (ii). By (77) and (78), to prove (7), it suffices to

prove that

(95)
∥∥∥ sup
k∈Z

∣∣∣ ∞∑
j=k

σk ∗ f
∣∣∣∥∥∥
Lp(u)

≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s Msu+M3

su)

for all p ∈ (1, 2), any fixed k ∈ N and s > tk. For I1f , we get from (64) and
(3) that

(96)
‖I1f‖Lp(u) ≤ C‖M(Th,Ωf)‖Lp(u)

≤ Cp‖Th,Ωf‖Lp(Mu) ≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s u+M2

su)

for any fixed positive integer k, s > tk and p ∈ (1, 2].
For I2f , by (64) and (77) we have

(97)
‖Hjf‖Lp(u) ≤ C‖MMσf‖Lp(u)

≤ Cp‖Mσf‖Lp(Mu) ≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s u+M2

su)

for any fixed k ∈ N, all s > tk and p ∈ (1, 2]. An interpolation between (87)
and (97) (see [4, Corollary 5.5.4]) yields that

(98) ‖Hjf‖Lp(u) ≤ Ch,Ω,q,γ,s,p2−δ(p,s)j‖f‖Lp(MsM σ̃
s Msu+M3

su)
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for any fixed positive integer k, all s > tk and p ∈ (1, 2]. Here δ(p, s) > 0.
Inequality (98) together with (82) yields that

(99) ‖I2f‖Lp(u) ≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s Msu+M3

su)

for any fixed positive integer k, all s > tk and p ∈ (1, 2].
For I3f . by (68) and (82) we have

(100)
‖Jjf‖Lp(u) ≤ C‖MMσf‖Lp(u)

≤ Cp‖Mσf‖Lp(Mu) ≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s u+M2

su)

for any fixed positive integer k, all s > tk and p ∈ (1, 2]. By interpolating
between (100) and (93) (see [4, Corollary 5.5.4]),

(101) ‖Jjf‖Lp(u) ≤ Ch,Ω,q,γ,s,p2−δ(p,s)j‖f‖Lp(MsM σ̃
s Msu+M3

su)

for any fixed positive integer k, all s > tk and p ∈ (1, 2]. Here δ(p, s) > 0. We
get from (101) and (90) that

(102) ‖I3f‖Lp(u) ≤ Ch,Ω,q,γ,s,p‖f‖Lp(MsM σ̃
s Msu+M3

su)

for any fixed positive integer k, all s > tk and p ∈ (1, 2]. Then (95) follows
from (80), (96), (89) and (102). �

Proof of Theorem 1.4. We define two families of measures {τk,t}k∈Z and
{|τk,t|}k∈Z respectively by∫

Rn
f(x)dτk,t(x) =

1

(2kt)%

∫
2k−1t<r(x)≤2kt

f(x)
Ω(x′)h(r(x))

r(x)α−%
dx

and ∫
Rn
f(x)d|τk,t|(x) =

1

(2kt)%

∫
2k−1t<r(x)≤2kt

f(x)
|Ω(x′)h(r(x))|

r(x)α−%
dx.

We also define the maximal operators Mτ and M τ̃ respectively by

Mτf(x) = sup
k∈Z

sup
t∈[1,2]

||τk,t| ∗ f(x)| and M τ̃f(x) = sup
k∈Z

sup
t∈[1,2]

||τ̃k,t| ∗ f(x)|,

where ∫
Rn
f(x)d|τ̃k,t|(x) =

∫
Rn
f(−x)d|τk,t|(x).

One can easily check that

(103) Mτf(x) ≤ 2Mσ|f |(x), M τ̃f(x) ≤ 2M σ̃|f |(x).

Invoking Lemma 2.3, we get from (103) that

(104) ‖Mτf‖Lp(Rn) ≤ Ch,Ω,q,γ‖f‖Lp(Rn)

for all p ∈ (1,∞). By the arguments similar to those used to derive[18, Lemma
2.3],

(105)
max

{
|τ̂k,t(ξ)|,

∣∣|̂τk,t|(ξ)− |̂τk,t|(0)
∣∣}

≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)|A∗2ktξ|
1/(4q′γ′L);
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(106)
max

{
|τ̂k,t(ξ)|,

∣∣|̂τk,t|(ξ)∣∣}
≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ) min{1, |A∗2ktξ|

−1/(4q′γ′L)}.

By (13), (14), (105) and (106), we get

(107)
|τ̂k,t(ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)

×
(
(2ks(ξ))1/(4q′γ′a1L) + (2ks(ξ))1/(4q′γ′b1L)

)
;

(108)
|τ̂k,t(ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Σ)

×min
{

1, (2ks(ξ))−1/(4q′γ′a2L) + (2ks(ξ))−1/(4q′γ′b2L)
}
,

where C > 0 is independent of h,Ω, q, γ. An argument similar to those used in
deriving [16, (3.2)] yields that

(109) Mh,Ω,%f(x) ≤ 1

1− 2−τ

(∑
k∈Z

∫ 2

1

|τk,t ∗ f(x)|2 dt
t

)1/2

=:
1

1− 2−τ
Mf(x).

In what follows, we fix a nonnegative measurable function u on Rn. We
divide the proof into two steps:

Step 1: Prove (8) for the case p ∈ [2,∞). Let Sk be given as in the
proof of Theorem 1.1. By Minkowski’s inequality, it holds that

(110)

Mf(x) =
(∑
k∈Z

∫ 2

1

∣∣∣∑
j∈Z

S3
j+k(τk,t ∗ f)(x)

∣∣∣2 dt
t

)1/2

≤
∑
j∈Z

(∑
k∈Z

∫ 2

1

|S3
j+k(τk,t ∗ f)(x)|2 dt

t

)1/2

=:
∑
j∈Z

Ajf(x).

By (104) and the arguments similar to those used in deriving (45),

(111)
∥∥∥(∑

k∈Z

∫ 2

1

|τk,t∗gk|2
dt

t

)1/2∥∥∥
Lp(u)

≤ Ch,Ω,q,γ,p,s
∥∥∥(∑

k∈Z
|gk|2

)1/2∥∥∥
Lp(M τ̃

s u)

for all 2 < p < ∞ and any s > 1. By (35), (36), (111) and the fact M τ̃
s u ≤

MsM
τ̃
s u ∈ A1, one finds

(112)

‖Ajf‖Lp(u) =
∥∥∥(∑

k∈Z

∫ 2

1

|τk,t ∗ S3
j+kf |2

dt

t

)1/2∥∥∥
Lp(u)

≤ Ch,Ω,q,γ,p,s
∥∥∥(∑

k∈Z
|S3
j+kf |2

)1/2∥∥∥
Lp(M τ̃

s u)

≤ Ch,Ω,q,γ,p,s‖f‖Lp(MsM τ̃
s u)

for all 2 < p < ∞ and any s > 1. On the other hand, fix t ∈ [1, 2], by (107),
(108) and Plancherel’s theorem, we have

(113) ‖τk,t ∗ Sj+kw‖L2(Rn) ≤ Ch,Ω,q,γ2−δ3|j|‖w‖L2(Rn)
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for some δ3 > 0 and any arbitrary function w on Rn. Here δ3 depends on
q, γ, L. One can easily check that

(114)
‖τk,t ∗ Sj+kw‖L2(us)

≤ (‖τk,t‖‖Θj+k‖L1(Rn))
1/2‖τk,t| ∗ |Θj+k| ∗ |w|2‖L1(us)

≤ Ch,Ω,q,γ‖w‖L2(Mτ̃us)

for any s > 1. By (113), (114) and the interpolation of L2-spaces with change
of measure ([4, Theorem 5.4.1]), we obtain

(115) ‖τk,t ∗ Sj+kw‖L2(u) ≤ Ch,Ω,q,γ,s2−δ3(1−1/s)|j|‖w‖L2(MsM τ̃
s u)

for any s > 1. By (115) with w = Sj+kf and (35), we obtain

‖Ajf‖2L2(u) =

∫
Rn

∑
k∈Z

∫ 2

1

|S3
j+kτk,t ∗ f(x)|2 dt

t
u(x)dx

=

∫ 2

1

∫
Rn

∑
k∈Z
|S3
j+kτk,t ∗ f(x)|2u(x)dx

dt

t

≤ C
∑
k∈Z

∫ 2

1

∫
Rn
|τk,t ∗ S2

j+kf(x)|2u(x)dx
dt

t

≤ Ch,Ω,q,γ,s2−2δ3(1−1/s)|j|
∫
Rn

∑
k∈Z
|Sj+kf(x)|2MsM

τ̃
s u(x)dx

≤ Ch,Ω,q,γ,s2−2δ3(1−1/s)|j|‖f‖2L2(MsM τ̃
s u).

It follows that

(116) ‖Ajf‖L2(u) ≤ Ch,Ω,q,γ,s2−δ3(1−1/s)|j|‖f‖L2(MsM τ̃
s u)

for any s > 1. An interpolation between (116) and (112) (see [4, Corollary
5.5.4]) yields that

(117) ‖Tjf‖Lp(u) ≤ Ch,Ω,q,γ,p,s2−β(p,q,γ,s)|j|‖f‖Lp(MsM τ̃
s u)

for 2 ≤ p <∞ and s > 1. Here β(p, q, γ, s) > 0 depends only on p, q, γ and s.
Combining (117) with (103), (109) and (110) yields (8).

Step 2: Prove (8) for the case p ∈ (1, 2). We want to show that for
any 1 < p < 2 and s > 1, there exists a constant α(p, q, γ) > 0 independent of
j such that

(118) ‖Ajf‖Lp(u) ≤ Ch,Ω,q,γ,p,s2−α(p,q,γ)|j|‖f‖Lp(MsM τ̃
s u).

Fix t ∈ [1, 2]. It is clear that

(119) ‖τk,t ∗ f‖L∞(Rn) ≤ Ch,Ω,q,γ‖f‖L∞(Rn);

(120) ‖τk,t ∗ f‖L1(u) ≤ C‖f‖L1(M τ̃u).

An interpolation between (119) and (120) implies that

(121) ‖τk,t ∗ f‖Lp(u) ≤ Ch,Ω,q,γ,p‖f‖Lp(M τ̃u)
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for all 1 < p < 2. Combining (121) with (103) yields that

(122)

∥∥∥(∑
k∈Z
‖τk,t ∗ fk‖pLp([1,2],t−1dt)

)1/p∥∥∥
Lp(u)

≤ Ch,Ω,q,γ,p
∥∥∥( ∑

k∈Z
|fk|p

)1/p∥∥∥
Lp(M σ̃u)

for all 1 < p < 2. We get from (104) that

(123)
∥∥∥ sup
k∈Z

sup
t∈[1,2]

|τk,t ∗ fk|
∥∥∥
Lp(Rn)

≤ Ch,Ω,q,γ,p
∥∥∥ sup
k∈Z
|fk|
∥∥∥
Lp(Rn)

for all 1 < p < 2. By interpolating between (122) and (123),

(124)

∥∥∥(∑
k∈Z
‖τk,t ∗ fk‖2L2([1,2],t−1dt)

)1/2∥∥∥
Lp(u1/t1 )

≤ Ch,Ω,q,γ,p
∥∥∥(∑

k∈Z
|fk|2

)1/2∥∥∥
Lp(M σ̃u)1/t1

for all 1 < p < 2, where t1 = 2/p. Substitute ut1 for u in (124), we obtain

(125)

∥∥∥(∑
k∈Z
‖τk,t ∗ fk‖2L2([1,2],t−1dt)

)1/2∥∥∥
Lp(u)

≤ Ch,Ω,q,γ,p
∥∥∥( ∑

k∈Z
|fk|2

)1/2∥∥∥
Lp(M σ̃

t1
u)
.

Since Mt1M
τ̃
t1u ∈ A1, by the weighted Littlewood-Paley theory and (125),

(126)

‖Ajf‖Lp(u) =
∥∥∥(∑

k∈Z
‖τk,t ∗ S3

j+kf‖2L2([1,2],t−1dt)

)1/2∥∥∥
Lp(u)

≤ Ch,Ω,q,γ,p
∥∥∥(∑

k∈Z
|S3
j+kf |2

)1/2∥∥∥
Lp(M τ̃

t1
u)

≤ Ch,Ω,q,γ,p‖f‖Lp(Mt1
M τ̃
t1
u)

for all 1 < p < 2. Using (116) with s = t1 and (103), we get

(127) ‖Ajf‖L2(u) ≤ Ch,Ω,q,γ2−δ3|j|/t
′
1‖f‖L2(Mt1

M σ̃
t1
u).

An interpolation between (126) and (127) implies that for any p ∈ (1, 2), s ∈
(1, 2), there exist q ∈ (1, 2) and θ ∈ [0, 1] such that s = 2

q , 1
p = θ

2 + 1−θ
q and

(128) ‖Ajf‖Lp(u) ≤ Ch,Ω,q,γ,p2−α(p,q,γ)|j|‖f‖Lp(MsM σ̃
s u),

where α(p, q, γ) > 0. Note that MsM
τ̃
s u ≤ CMtM

τ̃
t u for t > s by Hölder’s

inequality. This together with (128) yields that

(129) ‖Ajf‖Lp(u) ≤ Ch,Ω,q,γ,p2−α(p,q,γ)|j|‖f‖Lp(MtM σ̃
t u)

for all 1 < p < 2 and t > 1. Then (8) follows from (109), (110) and (129). This
completes the proof of Theorem 1.4. �
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4. Proofs of Corollaries 1.5 and 1.6

In this section we shall prove Corollaries 1.5 and 1.6. To prove our main
results, we need the following proposition.

Proposition 4.1. Let 1 < p < ∞ and s0 ≥ 1. Assume that T is a linear or
sublinear operator such that

(130) ‖Tf‖Lp(u) ≤ Cp,s,s0‖f‖Lp(Hs(u))

for all s > s0 and any nonnegative measurable function u on Rn, where for a
fixed s > s0, the operator Hs is a bounded operator from Lr(Rn) to itself for
all r ∈ (s,∞). Then for any q ∈ (p, ps0

s0−1 ), the following inequality holds:

(131)
∥∥∥(∑

j∈Z
|Tfj |p

)1/p∥∥∥
Lq(Rn)

≤ Cp,q
∥∥∥(∑

j∈Z
|fj |p

)1/p∥∥∥
Lq(Rn)

.

Proof. Fix q ∈ (p, ps0
s0−1 ) and write r = q

q−p . Let {fj} ∈ Lq(Rn, `p) and fix

s ∈ (s0, r). By assumption (130) and Hölder’s inequality, one has∥∥∥(∑
j∈Z
|Tfj |p

)1/p∥∥∥
Lq(Rn)

= sup
g∈Lr(Rn),

g≥0,‖g‖Lr(Rn)≤1

∫
Rn

∑
j∈Z
|Tfj(x)|pg(x)dx

≤ Cp,s,s0 sup
g∈Lr(Rn),

g≥0,‖g‖Lr(Rn)≤1

∑
j∈Z

∫
Rn
|fj(x)|pHs(g)(x)dx

≤ Cp,s,s0 sup
g∈Lr(Rn),

g≥0,‖g‖Lr(Rn)≤1

∫
Rn

∥∥∥∑
j∈Z
|fj |p

∥∥∥
Lq/p(Rn)

‖Hs(g)‖Lr(Rn)

≤ Cp,s,s0

∥∥∥(∑
j∈Z
|fj |p

)1/p∥∥∥p
Lq(Rn)

,

which gives (131) and completes the proof. �

Proofs of Corollaries 1.5 and 1.6. By Lemma 2.3 and (32), we have

(132) ‖MsM
σ̃
s Msu+ M3

su‖Lr(Rn) ≤ Ch,Ω,q,γ,r‖u‖Lr(Rn)

for any 1 < s <∞ and r > s. By (132), Remark 1.7, Proposition 4.1, Theorems
1.1-1.4 and the arguments similar to those used to derive [17, Corollaries 1.3-
1.5], we can get the conclusions of Corollaries 1.5 and 1.6. The details are
omitted. �
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