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UNIQUENESS OF TOPOLOGICAL SOLUTIONS FOR

THE GUDNASON MODEL

Soojung Kim and Youngae Lee

Abstract. In this paper, we consider the Gudnason model of N = 2

supersymmetric field theory, where the gauge field dynamics is governed
by two Chern-Simons terms. Recently, it was shown by Han et al. that

for a prescribed configuration of vortex points, there exist at least two
distinct solutions for the Gudnason model in a flat two-torus, where a

sufficient condition was obtained for the existence. Furthermore, one

of these solutions has the asymptotic behavior of topological type. In
this paper, we prove that such doubly periodic topological solutions are

uniquely determined by the location of their vortex points in a weak-

coupling regime.

1. Introduction

Chern-Simons gauge field theories have been developed in various physics
models to study high temperature superconductivity [45,51], the Bose-Einstein
condensates [40,44], the quantum Hall effect [61], optics [8], and superfluids [58]
(see also [1, 3, 6, 7, 10–13, 19, 21, 23, 30, 33, 37, 38, 41–43, 47, 49, 52–54, 56, 57, 62–
64,66,69–71] and references therein). For a supersymmetric gauge field theory,
Gudnason in [26, 27] formulated a non-abelian Chern-Simons model (see also
[2, 4, 5, 28, 35, 36, 50, 59, 60] and references therein for the backgrounds). Under
a suitable physical ansatz for vortex solutions, the Gudnason model of N = 2
supersymmetric field theory, where the dynamics of gauge fields is governed by
two Chern-Simons terms, was reduced to the following nonlinear elliptic system
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(refer to [26,27,32] for the details):

(1)



∆uα,β = α2(euα,β+vα,β + euα,β−vα,β )(euα,β+vα,β + euα,β−vα,β − 2)

+ αβ(euα,β+vα,β − euα,β−vα,β )2 + 4π

N∑
i=1

miδpi ,

∆vα,β = αβ(euα,β+vα,β − euα,β−vα,β )(euα,β+vα,β + euα,β−vα,β − 2)

+ β2(e2uα,β+2vα,β − e2uα,β−2vα,β ) + 4π

N∑
i=1

miδpi .

Here, α > 0 and β > 0 are positive parameters, δpi stands for the Dirac measure
concentrated at pi, and pi 6= pj if i 6= j. Each pi is called a vortex point and
mi ∈ N is the multiplicity of pi.

In this paper, we are concerned with solutions to the elliptic system (1)
over a two-dimensional flat torus T, a doubly periodic domain in R2, due to
the lattice structures in a condensed matter system (for instance, see [1, 66]),
and the theory suggested by ’t Hooft in [68]. In a flat two-torus T, Han,
Lin, Tarantello, and Yang in [32] proved that there exist at least two dis-
tinct solutions to the system (1) for any prescribed distribution of vortices
by applying a variational approach. Here, a necessary condition and some
sufficient condition on the coupling parameters were derived for the existence
results. In [32], they also established planar topological vortex solutions of a
generalized m-coupled system (m ≥ 2) in the whole plane R2. We refer to
[14,17,18,22,25,31,33,34,39,48,55,67] for recent developments on the equation
(1).

In [32], it was also shown that one of two constructed solutions to (1) over
T satisfies that both components converge to 0 pointwise a.e. in T as coupling
parameters tend to infinity. More precisely, we quote some of results as follows:

Theorem A ([32, Theorem 2.2]). For any given constant η > 1, assume 1 <
β
α < η. Then there exists a constant Mη > 0 such that if α > Mη, then the
system (1) admits at least two distinct solutions over T. Furthermore, one of
the solutions satisfies the following asymptotic behavior:

(2) uα,β + vα,β → 0, uα,β − vα,β → 0 as α→∞ pointwise a.e. in T.

The aim of this paper is to prove that solutions to (1) satisfying (2) are
uniquely determined by a given configuration of vortex points pi (1 ≤ i ≤ N),
provided that β/α > 1 is sufficiently close to 1 and α > 0 is large enough. As
in Section 4 of [32], let us consider (u1, u2) := (uα,β + vα,β , uα,β − vα,β) for a
solution (uα,β , vα,β) to (1). Then (1) is transformed into the following system
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in terms of (u1, u2):

(3)



∆u1 = (α+ β)2eu1(eu1 − 1) + (α− β)2eu2(eu1 − 1)

− (β2 − α2)(eu1 + eu2)(eu2 − 1) + 8π

N∑
i=1

miδpi ,

∆u2 = (α+ β)2eu2(eu2 − 1) + (α− β)2eu1(eu2 − 1)

− (β2 − α2)(eu1 + eu2)(eu1 − 1).

In the case when β/α > 1 is sufficiently close to 1 and α+β is sufficiently large,
the system (3) is almost decoupled, and each equation of (3) can be regarded
as a perturbation of the following elliptic equation:

(4) ∆vε +
1

ε2
evε(1− evε) = 4π

N0∑
i=0

niδqi

with ε := 1/(α+ β). The equation (4) arises in the study of high temperature
superconductivity. In the relativistic Chern-Simons model suggested by Hong,
Kim and Pac [37] and Jackiw and Weinberg [41], self-dual equations satisfied
by energy minimizers can be reduced to the nonlinear elliptic equation (4)
involving exponential nonlinearity (see [37, 41, 67, 71] for the details). During
the last few decades, the equation (4) has been extensively studied, and we
refer the readers to [13, 20, 21, 38, 47, 53, 64, 67]. Among them, in [20, 65], the
uniqueness of topological solutions to (4) has been proved not only over T but
also over R2. Here, a solution vε of (4) over T is called a topological solution if

vε → 0 as ε→ 0 pointwise a.e. in T.

Similarly, we say that (uα,β , vα,β) is a topological solution to (1) over T if it

satisfies (2). Note that β →∞ as α→∞ assuming that 1 < β
α < η in Theorem

A.
In the paper, we shall prove that a topological solution to (1) over T is

unique under the assumption that β/α > 1 is sufficiently close to 1 and α > 0
is sufficiently large. For the purpose, we will study the asymptotic behavior of
solutions (u1, u2) to the reduced system (3) which is a perturbed system of (4)
as α tends to infinity. In the analysis of solutions to (3), a uniform boundedness
of L1 norm of nonlinear terms with respect to coupling parameters would play
an important role. But it seems difficult to derive a uniform L1 boundedness
of the nonlinearities when β2−α2 is too big. In order to guarantee the uniform
L1 boundedness with respect to large α > 0, a weak coupling effect is imposed
throughout the paper, that is, positive parameters α and β satisfy

(5) 0 < β2 − α2 = (β − α)(α+ β) ≤ N

for some constant N > 0. Notice that the assumption (5) implies that

β

α
→ 1 as α→∞.
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We also mention that a classification result of Brezis-Merle type for solutions
to (1) over T was obtained in [46] in terms of their asymptotic behavior as
α→∞ under the assumption (5). In fact, the asymptotic behavior (2) is one
of the alternatives; see Proposition 2.5 for some preliminary results.

Now we state our main results in the paper. Throughout the paper, let us
fix vortex points pi ∈ T (1 ≤ i ≤ N) with multiplicity mi ∈ N which satisfy
pi 6= pj for i 6= j. Before proving the uniqueness of topological solutions to (1),
we will first obtain a priori estimate of topological solutions comparing with
the entire topological solutions on the whole plane R2. For each 1 ≤ j ≤ N ,
let us consider the following elliptic problem:

(6)

∆Uj + eUj (1− eUj ) = 8πmjδ0 in R2,

lim
|x|→+∞

Uj(x) = 0.

The problem (6) admits a unique solution Uj , and we call Uj the entire topo-
logical solution to (6). Indeed, Uj is radially symmetric about the origin and
negative in R2 (see Section 2 for important properties of Uj). Then we have a
priori estimate of topological solutions as follows:

Theorem 1.1. Assume that β > α > 0 satisfy the condition (5). Let (uα,β,
vα,β) be a sequence of solutions to (1) satisfying (2). Then, up to subsequences,
the following asymptotic behavior hold:∥∥∥∥∥∥uα,β + vα,β −

N∑
j=1

Uj

(
(α+ β)(x− pj)

)
χd(|x− pj |)

∥∥∥∥∥∥
L∞(T)

= O

(
1

(α+ β)2

)

and

‖uα,β − vα,β‖L∞(T) = O

(
1

(α+ β)2

)
as α→∞.

Here, Uj solves the problem (6), and a cut-off function χd satisfies that χd ≡ 1
on B d

2
(0), χd ≡ 0 on R2 \ Bd(0) and 0 ≤ χd ≤ 1 with a small fixed constant

d > 0 depending only on pj (≤ j ≤ N).

In order to show a prior estimate in Theorem 1.1, we employ a blow up
analysis around each vortex point, and uniform estimates of relevant linearized
operators (see Theorem 2.7).

Based on a priori estimate in Theorem 1.1, we prove the uniqueness of
topological solutions to (1).

Theorem 1.2. For given N ∈ N, let pi ∈ T (1 ≤ i ≤ N) be vortex points with
multiplicity mi ∈ N such that pi 6= pj for i 6= j. Assume that β > α > 0 satisfy
the condition (5). Then a topological solution of (1) is unique for sufficiently
large α > 0.
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The rest of the paper is organized as follows. In Section 2, we review some
preliminary results used in the paper. In Section 3, we study a priori esti-
mate of topological solutions and prove Theorem 1.1. Also, the uniqueness of
topological solutions in Theorem 1.2 is obtained.

2. Preliminaries

Throughout the paper, we will use the following notation:

(7) ε :=
1

α+ β
and σα,β :=

β − α
α+ β

for positive parameters β > α > 0. For notational simplicity, we denote σα,β
by σε. Then the assumption of a weak coupling effect (5) is equivalent to

(8) 0 < σε = σα,β =
β − α
α+ β

≤ Nε2,

and the elliptic system (3) can be rewritten as follows:

(9)



∆u1,ε =
1

ε2

{
eu1,ε(eu1,ε − 1) + σ2

εe
u2,ε(eu1,ε − 1)− σε(eu1,ε + eu2,ε)(eu2,ε − 1)

}
+ 8π

N∑
i=1

miδpi ,

∆u2,ε =
1

ε2

{
eu2,ε(eu2,ε − 1) + σ2

εe
u1,ε(eu2,ε − 1)− σε(eu1,ε + eu2,ε)(eu1,ε − 1)

}
.

As mentioned in the introduction, (9) can be considered as a perturbed system
of (4). For the system above, (u1,ε, u2,ε) is said to be a topological solution to
(9) if

(10) ui,ε → 0 as ε→ 0 pointwise a.e. in T for i = 1, 2.

We first recall some results on the limiting equation of (4). Let w be a
solution to the elliptic equation

(11) ∆w + ew(1− ew) = 4πmδ0 in R2.

Lemma 2.1 ([21, Lemma 3.2], [9,16]). Let m be a nonnegative integer, and w
be a solution of (11) with ew(1− ew) ∈ L1(R2). Then, either

(i) w(x)→ 0 as |x| → ∞, or
(ii) w(x) = −γ0 ln |x| + O(1) as |x| → ∞, where a constant γ0 > 0 is given

by

γ0 = −2m+
1

2π

∫
R2

ew(1− ew)dx.

Under the assumption that w satisfies the boundary condition (ii), we have∫
R2

e2wdx = π(γ2
0 − 4γ0− 4m2− 8m) and

∫
R2

ewdx = π(γ2
0 − 2γ0− 4m2− 4m).

In particular,
∫
R2 e

w(1− ew)dx > 8π(1 +m), and thus γ0 > 2(m+ 2).
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When m = 0, it has been known that the integral
∫
R2 e

w(1− ew)dx depends
on the maximum value of w, and has a lower bound as follows.

Lemma 2.2 ([13, Theorem 2.1], [15, Theorem 3.2], [63, Theorem 2.2]). Let
m = 0, and w be a solution of (11) with ew(1 − ew) ∈ L1(R2). Then, w(x)
is smooth, radially symmetric with respect to some point x0 in R2, and it is a
nonpositive, decreasing function of r = |x− x0|.

Moreover, suppose that w(r; s) is the radially symmetric solution with respect
to the origin of (11) satisfying

lim
r→0

w(r; s) = s and lim
r→0

w′(r; s) = 0,

where w′(r; s) denotes dw
dr (r; s). Then one has

(i) w(·; 0) ≡ 0.
(ii) If s < 0, then w(r; s) is strictly decreasing in r, and w(r; s)→ −∞ as

r →∞.
(iii) Let γ0 : (−∞, 0)→ (0,+∞) be a function defined by

γ0(s) ≡ 1

2π

∫
R2

ew(r;s)(1− ew(r;s))dx =

∫ ∞
0

ew(r;s)(1− ew(r;s))rdr.

Then, γ0 : (−∞, 0) → (4,+∞) is strictly increasing and bijective, and
satisfies

lim
s→−∞

γ0(s) = 4 and lim
s→0−

γ0(s) = +∞.

Now we are concerned with properties of topological solutions to (11) sat-
isfying the boundary condition (i) in Lemma 2.1. For any positive integer m,
consider the following problem

(12)

∆U + eU (1− eU ) = 4πmδ0 in R2,

lim
|x|→+∞

U(x) = 0.

The existence and uniqueness of a radially symmetric solution to (12) was
established in [15]. In [29, Theorem 1.3], Han showed that a solution to (12)
should be radially symmetric about the origin. Then the uniqueness of the
solution to (12) follows from [15]. Here, the unique solution U of (12) is called
an entire topological solution of the Chern-Simons-Higgs equation. For m > 0,
the entire topological solution U(x) = U(|x|) is negative in R2 and strictly
increasing with respect to |x|. Moreover, it was obtained in [65, Lemma 4.13]
that for any δ ∈ (0, 1), there exists a constant Cδ > 0 satisfying

(13) (1− eU(x)) + |∇U(x)|+ |U(x)| ≤ Cδe−(1−δ)|x| for any |x| ≥ 1.

Next, we present some results on a priori estimates of solutions (u1,ε, u2,ε)
to (9).
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Lemma 2.3 ([32, Proposition 4.1]). Let (u1,ε, u2,ε) be solutions of (9) over T.
Then, it holds that

u1,ε(x) < 0 and u2,ε(x) < 0 for any x ∈ T.

Using the assumption (8), we have the uniform L1(T) boundedness of the
main nonlinear terms in (9) with respect to ε > 0.

Lemma 2.4 ([46, Lemma 2.4]). Assume that the condition (8) holds. Let
(u1,ε, u2,ε) be solutions of (9) over T. Then, we have∫

T

1

ε2
eu1,ε (1− eu1,ε) dx =

∫
T

1

ε2
eu1,ε |1− eu1,ε | dx ≤ 8πM + 2N|T|=: 8πl0,

where M =
∑N
i=1mi, and∫

T

1

ε2
eu2,ε (1− eu2,ε) dx =

∫
T

1

ε2
eu2,ε |1− eu2,ε | dx ≤ 2N|T|.

We also quote the following result on the asymptotic behavior of solutions
to (9).

Proposition 2.5 ([46, Proposition 3.1]). Assume that the condition (8) holds.
Let (u1,ε, u2,ε) be a sequence of solutions to (9) over T, and let Z := {p1, . . .,
pN}. Then the following properties hold.

(i) Up to subsequences, u1,ε satisfies one of the following:
(1a) u1,ε → 0 uniformly on any compact subset of T \ Z as ε→ 0;
(1b) there exists a constant ν0 > 0 such that

sup
ε→0

(
sup
T
u1,ε

)
≤ −ν0.

(ii) Up to subsequences, u2,ε satisfies one of the following:
(2a) there is a constant c0 > 0, independent of ε > 0, satisfying

‖u2,ε‖L∞(T) ≤ c0ε2;
(2b) there exists a constant ν0 > 0 such that

sup
ε→0

(
sup
T
u2,ε

)
≤ −ν0.

In order to remove singularities, let us introduce the Green function G(x, y)
which satisfies

−∆xG(x, y) = δy −
1

|T|
∀x, y ∈ T with

∫
T
G(x, y)dy = 0,

where |T| is the measure of T. We denote the regular part of G(x, y) by

γ(x, y) = G(x, y) +
1

2π
ln |x− y|.

Let

u0(x) := −8π

N∑
i=1

miG(x, pi) and v1,ε := u1,ε − u0.
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Assuming that |T| = 1, (9) can be written in terms of (v1,ε, u2,ε) as follows:

∆v1,ε =
1

ε2

{
ev1,ε+u0(ev1,ε+u0 − 1) + σ2

εe
u2,ε(ev1,ε+u0 − 1)

−σε(ev1,ε+u0 + eu2,ε)(eu2,ε − 1)
}

+ 8πM,

∆u2,ε =
1

ε2

{
eu2,ε(eu2,ε − 1) + σ2

εe
v1,ε+u0(eu2,ε − 1)

−σε(ev1,ε+u0 + eu2,ε)(ev1,ε+u0 − 1)
}
.

Then a priori gradient estimate of (v1,ε, u2,ε) was obtained by using the Green
representation.

Lemma 2.6 ([46, Lemma 2.6]). Assume that the condition (8) holds. Let
(u1,ε, u2,ε) be a sequence of solutions to (9) over T. Then there exists a uniform
constant C > 0, independent of ε > 0, such that

‖∇v1,ε‖L∞(T) + ‖∇u2,ε‖L∞(T) ≤
C

ε
.

Lastly, let us define the following linearized operators:

L1,ε (φ) := ∆φ+
1

ε2

 N∑
j=1

g′
(
Uj

(
x− pj
ε

))
χd(|x− pj |)

+g′ (0)
(

1−
N∑
j=1

χd(|x− pj |)
)φ,

L2,ε (φ) := ∆φ+
g′ (0)

ε2
φ = ∆φ− 1

ε2
φ,

where

g(t) := et(1− et).
Employing the linearized operators enables us to deduce a refined asymptotic
behavior of (u1,ε, u2,ε). Following the proof of [24, Theorem 2.4], we have the
the solvability results of the operators L1,ε and L2,ε together with uniform L∞

estimates.

Theorem 2.7. The operator

L1,ε : W 2,2 (T)→ L2 (T)

is an isomorphism. Moreover, there exists a uniform constant C > 0 such that
if (φ, h) ∈ W 2,2 (T) × L2 (T) satisfies L1,ε (φ) = h on T with φ, h ∈ L∞ (T),
then

‖φ‖L∞(T) ≤ Cε2‖h‖L∞(T).

Also, L2,ε : W 2,2 (T) → L2 (T) is an isomorphism, and if (φ, h) ∈ W 2,2 (T) ×
L2 (T) satisfies L2,ε (φ) = h on T with φ, h ∈ L∞ (T), then

‖φ‖L∞(T) ≤ Cε2‖h‖L∞(T).
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Here, C > 0 is a uniform constant which is independent of ε > 0.

3. A priori estimate and uniqueness

3.1. Proof of Theorem 1.1

In the remaining part of the paper, assume that the condition (8) holds, and
let (u1,ε, u2,ε) be a solution of (9) over T satisfying (10), that is,

ui,ε → 0 as ε→ 0 pointwise a.e. in T for i = 1, 2.

Here, we recall that (u1,ε, u2,ε) is called a topological solution if it solves (9)
over T satisfying (10).

Remark 3.1. We note that a topological solution (u1,ε, u2,ε) of (9) satisfies (1a)
and (2a) of Proposition 2.5, i.e.,

(1a) u1,ε → 0 uniformly on any compact subset of T \ Z as ε→ 0;

(2a) ‖u2,ε‖L∞(T) ≤ c0ε
2 for some uniform constant c0 > 0 (independent of

ε > 0).

To analyze the asymptotic behavior of topological solutions, we compare u1,ε

with a scaled function of the entire topological solution of (6) near singularities.

Lemma 3.2. Assume that the condition (8) holds. Let (u1,ε, u2,ε) be a topo-
logical solution of (9). Then we have

(14) lim
ε→0

∥∥∥∥∥∥u1,ε −
N∑
j=1

Uj

(x− pj
ε

)
χd(|x− pj |)

∥∥∥∥∥∥
L∞(T)

= 0.

Here, Uj is the entire topological solution of (6), and a cut-off function χd
satisfies that χd ≡ 1 on B d

2
(0), χd ≡ 0 on R2 \ Bd(0) and 0 ≤ χd ≤ 1 with a

small fixed constant d > 0 depending only on pj (1 ≤ j ≤ N).

Proof. (i) Fix 1 ≤ j ≤ N and let ūi,ε(x) := ui,ε(εx+ pj) for i = 1, 2. Then ū1,ε

satisfies
∆ū1,ε + eū1,ε(1− eū1,ε)

= σ2
εe
ū2,ε(eū1,ε − 1)− σε(eū1,ε + eū2,ε)(eū2,ε − 1) + 8πmjδ0 in B d

ε
(0),∫

B d
ε

(0)

eū1,ε |(1− eū1,ε)|dx ≤ 8πl0.

Here we used Lemma 2.4 and d > 0 is chosen so that B2d(pi)∩B2d(pj) = ∅ for
i 6= j. Since |∇(u1,ε − u0)| = O(ε−1) in T by Lemma 2.6, it follows that

(15)
∣∣∣∇ū1,ε(x)− 4mjx

|x|2
∣∣∣ = O(1) in B d

ε
(0).

Firstly, we claim that there exists a constant C0 > 0, independent of ε > 0,
such that

(16) ‖ū1,ε‖L∞(B d
ε

(0)\B1(0)) ≤ C0 for small ε > 0.
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To prove the claim above, suppose to the contrary that up to a subsequence,
there exists xε ∈ B d

ε
(0) \B1(0) such that

lim
ε→0
|ū1,ε(xε)| = +∞.

Since max
T

u1,ε ≤ 0 by Lemma 2.3 , we see that lim
ε→0

ū1,ε(xε) = −∞. We shall

now distinguish two cases.
Case 1: lim

ε→0
|xε| is bounded.

We first observe that lim
ε→0

( sup
|x|= r

ε

|ū1,ε(x)|) = 0 for any fixed constant 0 < r <

d from Remark 3.1. Recalling the function γ0 given in Lemma 2.2, let us
fix a constant s0 < 0 such that γ0(s0) ≥ 8l0. Since lim

ε→0
ū1,ε(xε) = −∞,

the intermediate value theorem implies that there exists yε ∈ B d
ε
(0) \ B1(0)

satisfying

ū1,ε(yε) = s0 < 0.

Since xε, yε ∈ B d
ε
(0) \B1(0), it holds from the gradient estimation (15) that

(17)
s0 = ū1,ε(yε) = ū1,ε(xε) + (yε − xε) ·

∫ 1

0

∇ū1,ε(xε + t(yε − xε))dt

= ū1,ε(xε) +O(|yε − xε|).

Since lim
ε→0

ū1,ε(xε) = −∞ and lim
ε→0
|xε| is bounded in this case, (17) implies that

lim
ε→0
|yε| = +∞. Then utilizing the fact that ū1,ε(yε) = s0 and the gradient

estimation (15), we deduce from Ascoli’s theorem that ū1,ε(·+yε) converges to
a function ū in C0

loc(R2) up to a subsequence. By (8) and Lemma 2.3, we have
that
(18)
σ2
εe
u2,ε(eu1,ε −1)−σε(eu1,ε + eu2,ε)(eu2,ε −1)→ 0 as ε→ 0 uniformly in T.

This combined with Lemma 2.4 yields that ū satisfies

(19)


∆ū+ eū(1− eū) = 0 in R2,

ū(0) = s0,

∫
R2

eū|(1− eū)|dx ≤ 8πl0.

In view of Lemma 2.2, ū is a radially symmetric function with respect to some
point y0 ∈ R2. Since γ0(s) is increasing in s from Lemma 2.2 and ū(x) is
decreasing with respect to |x− y0|, we have that

8πl0 ≥
∫
R2

eū(1− eū)dx ≥ 2πγ0(ū(y0)) ≥ 2πγ0(s0) ≥ 16πl0,

which implies a contradiction.
Case 2: lim

ε→0
|xε| = +∞.

Since lim
ε→0

ū1,ε(xε) = −∞, it holds that lim
ε→0

ε|xε| = 0. Here we used the fact
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that lim
ε→0

sup
r
ε≤|x|≤

d
ε

|ū1,ε(x)| = 0 for any fixed constant 0 < r < d from Remark

3.1. Then by the intermediate value theorem, there exists yε ∈ B d
ε
(0)\B|xε|(0)

such that

ū1,ε(yε) = s0 < 0,

where a constant s0 < 0 is chosen so that γ0(s0) ≥ 8l0. Since lim
ε→0
|xε| = +∞

in this case, we see that lim
ε→0
|yε| = +∞. Thus by a similar argument as for the

case 1, using the fact that ū1,ε(yε) = s0, (15) and (18) implies that ū1,ε(·+ yε)
converges to a function ū in C0

loc(R2), where ū satisfies (19). Then ū is a
radially symmetric with respect to some point y0 ∈ R2 by Lemma 2.2. Since
γ0 is an increasing function by Lemma 2.2, it follows that

8πl0 ≥
∫
R2

eū(1− eū)dx ≥ 2πγ0(ū(y0)) ≥ 2πγ0(s0) ≥ 16πl0,

which is a contradiction. Thus we have proved the claim (16) in both cases.

(ii) Next, we will prove that for any 1 ≤ j ≤ N ,

(20) u1,ε(εx+ pj)− Uj(x)→ 0 in C0
loc(R2) as ε→ 0.

Fix 1 ≤ j ≤ N and let v̄1,ε(x) := ū1,ε(x)−4mj ln |x| = u1,ε(εx+pj)−4mj ln |x|.
Then, v̄1,ε satisfies the following:

∆v̄1,ε(x) + |x|4mjev̄1,ε(x)(1− |x|4mjev̄1,ε(x))

= σ2
εe
ū2,ε(x)(|x|4mjev̄1,ε(x) − 1)

− σε(|x|4mjev̄1,ε(x) + eū2,ε(x))(eū2,ε(x) − 1) in B d
ε
(0),∫

B d
ε

(0)

|x|4mjev̄1,ε(x)|(1− |x|4mjev̄1,ε(x))|dx ≤ 8πl0.

From (16), it holds that

(21) ‖v̄1,ε‖L∞(∂B1(0)) ≤ C0 for small ε > 0,

and by the gradient estimation (15), there exists a constant c0 > 0 such that

(22) lim
ε→0
‖∇v̄1,ε‖L∞(B d

ε
(0)) ≤ c0.

Utilizing (21)-(22) and a similar argument as for (18), there is a function Vj
such that v̄1,ε(x) → Vj(x) in C0

loc(R2), up to subsequences, as ε → 0, where
Vj satisfies 

∆Vj + |x|4mjeVj(x)(1− |x|4mjeVj(x)) = 0 in R2,∫
R2

|x|4mjeVj(x)|(1− |x|4mjeVj(x))|dx ≤ 8πl0.
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Let Ūj := Vj + 4mj ln |x|. Then Ūj satisfies

(23)


∆Ūj + eŪj (1− eŪj ) = 8πmjδ0 in R2,∫

R2

eŪj |(1− eŪj )|dx ≤ 8πl0.

Since v̄1,ε(x) = ū1,ε(x) − 4mj ln |x| → Vj(x) = Ūj(x) − 4mj ln |x| in C0
loc(R2),

we obtain that ū1,ε − Ūj → 0 in C0
loc(R2) as ε→ 0.

Now we will show that Ūj is the topological solution of (6), i.e., Ūj ≡ Uj . In
light of Lemma 2.1, suppose to the contrary that lim

|x|→+∞
Ūj(x) = −∞. Since

ū1,ε − Ūj → 0 in C0
loc(R2) as ε→ 0, using the estimate (16) implies that

‖Ūj‖L∞(BR(0)\B1(0)) ≤ C0 for any constant R > 0,

where a constant C0 > 0 is independent of R > 0. This contradicts the fact that
lim

|x|→+∞
Ūj(x) = −∞. Therefore, we deduce that Ūj is the unique topological

solution of (6) satisfying (23), namely, Ūj ≡ Uj . Since ū1,ε(x) − Ūj(x) =
u1,ε(εx+ pj)− Uj(x)→ 0 in C0

loc(R2) as ε→ 0, we obtain the convergence in
(20) for any 1 ≤ j ≤ N .

(iii) Now, we will improve the convergence result of (20) to show (14). More
precisely, we claim that for each 1 ≤ j ≤ N ,

(24) lim
ε→0
‖u1,ε(εx+ pj)− Uj(x)χd(|εx|)‖L∞(B d

ε
(0)) = 0.

To prove (24), we argue by contradiction and suppose that there exist j ∈
{1, . . . , N} and ρ > 0 satisfying

lim
ε→0
‖u1,ε(εx+ pj)− Uj(x)χd(|εx|)‖L∞(B d

ε
(0)) > ρ.

Fix a constant s0 ∈ (−ρ, 0) such that γ0(s0) ≥ 8l0 in light of Lemma 2.2.
Then using (20) and the intermediate value theorem, there exists yε ∈ B d

ε
(0)

satisfying

(25) |u1,ε(εyε + pj)− Uj(yε)χd(|εyε|)| = |s0| 6= 0.

In view of (20), we see that lim
ε→0
|yε| = +∞. Then it follows that lim

ε→0
Uj(yε) = 0

since Uj is the topological solution satisfying (23). Thus we deduce that

lim
ε→0

u1,ε(εyε + pj) = s0 < 0

by using (25), Lemma 2.3 and the fact that s0 < 0.
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Now let ¯̄ui,ε(x) := ui,ε(ε(x+ yε) + pj) for i = 1, 2. Then ¯̄u1,ε satisfies

∆¯̄u1,ε + e
¯̄u1,ε(1− e¯̄u1,ε)

= σ2
εe

¯̄u2,ε
(
e

¯̄u1,ε − 1
)
− σε(e¯̄u1,ε + e

¯̄u2,ε))(e
¯̄u2,ε − 1) in B |yε|

2
(0),∫

B |yε|
2

(0)

e
¯̄u1,ε(x)|(1− e¯̄u1,ε(x))|dx ≤ 8πl0,

¯̄u1,ε(0) = s0 + o(1) as ε→ 0.

Here, we notice that lim
ε→0
|yε| = +∞, and |x + yε| ≥ |yε|/2 for x ∈ B |yε|

2
(0).

Note that lim
ε→0

¯̄u1,ε(0) = s0 and∣∣∣∣∇¯̄u1,ε(x)− 4mj(x+ yε)

|x+ yε|2

∣∣∣∣ = O(1) in B |yε|
2

(0)

in light of (15). Together with a similar argument for (18), we deduce that
¯̄u1,ε(x) converges to a function ¯̄u in C0

loc(R2), and ¯̄u satisfies
∆¯̄u+ e

¯̄u(1− e¯̄u) = 0 in R2,∫
R2

eū(x)|(1− eū(x))|dx ≤ 8πl0, ¯̄u(0) = s0.

Lemma 2.2 implies that ¯̄u is radially symmetric with respect to some point
y0 ∈ R2. Since γ0 is an increasing function by Lemma 2.2, we have that

8πl0 ≥
∫
R2

e
¯̄u|1− e¯̄u|dx ≥ 2πγ0(¯̄u(y0)) ≥ 2πγ0(s0) ≥ 16πl0.

This is a contradiction. So we have proved (24).
Since

sup
T\∪Ni=1Bd(pi)

|u1,ε| → 0 as ε→ 0

by Remark 3.1, and χd(|x|) ≡ 0 if |x| ≥ d, we complete the proof of Lemma
3.2 by using (24). �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. To prove Theorem 1.1, it suffices to show the following
refined asymptotic behavior for the first component u1,ε:

(26)

∥∥∥∥∥∥u1,ε −
N∑
j=1

Uj

(x− pj
ε

)
χd(|x− pj |)

∥∥∥∥∥∥
L∞(T)

= O(ε2).

Here, we use the notation u1,ε = uα,β+vα,β and u2,ε = uα,β−vα,β as seen in the

introduction and Section 2, and recall Remark 3.1. Let Uj,ε(x) := Uj

(
x−pj
ε

)
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for 1 ≤ j ≤ N , and let

φ1,ε := u1,ε −
N∑
j=1

Uj,ε(x)χd(|x− pj |).

Since φ1,ε belongs to W 2,2(T) ∩ L∞(T) in light of the proof of Lemma 3.2,
Theorem 2.7 implies that there exists a constant C > 0 satisfying

(27) ‖φ1,ε‖L∞(T) ≤ Cε
2 ‖L1,ε(φ1,ε)‖L∞(T) ,

provided that L1,ε(φ1,ε) ∈ L∞ (T). Since Uj (1 ≤ j ≤ N) is the topological
solution and has exponential decay to zero at infinity (see (13)), it holds that

(28) sup
d
2≤|x−pj |≤d

{
(1− eUj,ε(x)) + ε|∇Uj,ε(x)|+ |Uj,ε(x)|

}
≤ Ce− cε ,

for small ε > 0 with some uniform constants C > c > 0, and hence we deduce
that

(29)

∆
[ N∑
j=1

Uj,ε(x)χd(|x− pj |)
]

= − 1

ε2

N∑
j=1

eUj,ε(x)
(

1− eUj,ε(x)
)
χd(|x− pj |) + 8π

N∑
j=1

mjδpj + o(1)

as ε → 0. Here we remind that a constant d > 0 is independent of ε > 0, and
χd is a smooth function such that 0 ≤ χd ≤ 1, χd ≡ 1 in B d

2
(0) and χd ≡ 0 in

R2 \Bd(0). By (8) and Lemma 2.3, we have

σ2
εe
u2,ε(eu1,ε − 1)− σε(eu1,ε + eu2,ε)(eu2,ε − 1)→ 0 as ε→ 0 uniformly on T.

Then it follows from (29) that

L1,ε(φ1,ε)

= ∆φ1,ε +
1

ε2

 N∑
j=1

g′ (Uj,ε(x))χd(|x− pj |)−
(

1−
N∑
j=1

χd(|x− pj |)
) φ1,ε

=
1

ε2


N∑
j=1

eUj,ε(x)
(

1− eUj,ε(x))
)
χd(|x− pj |)

− 1

ε2
eu1,ε(1− eu1,ε)

+
1

ε2

 N∑
j=1

g′ (Uj,ε(x))χd(|x− pj |)−
(

1−
N∑
j=1

χd(|x− pj |)
) φ1,ε +O(1)
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as ε→ 0. Letting

Φ1,ε(x) :=

N∑
j=1

g (Uj,ε(x))χd(|x− pj |)− g (u1,ε)

+

 N∑
j=1

g′ (Uj,ε(x))χd(|x− pj |)−
(

1−
N∑
j=1

χd(|x− pj |)
)φ1,ε,

we have that

(30) ‖φ1,ε‖L∞(T) ≤ O(ε2) + C‖Φ1,ε‖L∞(T)

in view of (27), provided that Φ1,ε ∈ L∞ (T).
Now we will estimate ‖Φ1,ε‖L∞(T) in terms of ‖φ1,ε‖L∞(T). Firstly, we see

that in B d
2
(pj) for each 1 ≤ j ≤ N ,

(31)
Φ1,ε(x) = g

(
Uj,ε(x)

)
− g(u1,ε) + g′

(
Uj,ε(x)

)(
u1,ε − Uj,ε(x)

)
= O

(
|u1,ε − Uj,ε|2

)
= O(|φ1,ε|2).

Here we recall that u1,ε < 0 and Uj,ε < 0. Since g′(0) = −1, we get that in
Bd(pj) \B d

2
(pj) for each 1 ≤ j ≤ N ,

Φ1,ε(x) = g
(
Uj,ε(x)

)
χd(|x− pj |)− g

(
Uj,ε(x)χd(|x− pj |)

)
+ g
(
Uj,ε(x)χd(|x− pj |)

)
− g(u1,ε)

+ g′
(
Uj,ε(x)χd(|x− pj |)

)(
u1,ε − Uj,ε(x)χd(|x− pj |)

)
−
[
g′
(
Uj,ε(x)χd(|x− pj |)

)
− g′(0)

](
u1,ε − Uj,ε(x)χd(|x− pj |)

)
+
[
g′
(
Uj,ε(x)

)
− g′(0)

]
χd(|x− pj |)

(
u1,ε − Uj,ε(x)χd(|x− pj |)

)
.

Then using (28), we deduce that in Bd(pj) \B d
2
(pj) for each 1 ≤ j ≤ N ,

(32) Φ1,ε(x) = O(|φ1,ε|2) + o(|φ1,ε|) +O
(
e−

c
ε

)
.

In T \ ∪Nj=1Bd(pj), we have that χd(|x − pj |) = 0 and φ1,ε = u1,ε. Since
g(0) = 0 and g′(0) = −1, it holds that

(33)
Φ1,ε(x) = −g(u1,ε)− φ1,ε = −g(0)− g′(0)u1,ε +O(|u1,ε|2)− φ1,ε

= O(|φ1,ε|2).

In view of (30)-(33), we deduce that

(34)
‖φ1,ε‖L∞(T) ≤ O(ε2) + C‖Φ1,ε‖L∞(T)

= O(ε2) +O(‖φ1,ε‖2L∞(T)) + o(‖φ1,ε‖L∞(T)).
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Since

lim
ε→0
‖φ1,ε‖L∞(T) = lim

ε→0

∥∥∥∥∥∥u1,ε −
N∑
j=1

Uj

(x− pj
ε

)
χd(|x− pj |)

∥∥∥∥∥∥
L∞(T)

= 0

from Lemma 3.2, this combined with (34) yields (26), which completes the
proof of Theorem 1.1. �

3.2. Uniqueness of topological solutions

Lastly, we will prove the uniqueness of topological solutions to (1) as stated
in Theorem 1.2.

Proof of Theorem 1.2. To prove Theorem 1.2, suppose that there exist two
distinct solutions (u1,ε, u2,ε) and (ũ1,ε, ũ2,ε) of (9) such that

ui,ε, ũi,ε → 0 as ε→ 0 pointwise a.e. in T for i = 1, 2.

As in the proof of Theorem 1.1, let Uj,ε(x) := Uj

(
x−pj
ε

)
for 1 ≤ j ≤ N . Then

the difference u1,ε − ũ1,ε of the first components solves

L1,ε(u1,ε − ũ1,ε)

= ∆(u1,ε − ũ1,ε)

+
1

ε2

[ N∑
j=1

g′ (Uj,ε(x))χd(|x− pj |)+g′ (0)
(

1−
N∑
j=1

χd(|x− pj |)
)]

(u1,ε − ũ1,ε)

=
1

ε2

[ N∑
j=1

g′ (Uj,ε(x))χd(|x− pj |)+g′ (0)
(

1−
N∑
j=1

χd(|x− pj |)
)]

(u1,ε − ũ1,ε)

+H1,ε(x),

where

H1,ε(x) := − 1

ε2
(g(u1,ε)− g(ũ1,ε)) +

σε
ε2

(g(u2,ε)− g(ũ2,ε))

− σ2
ε

ε2

(
eu2,ε − eũ2,ε

)
+
σε
ε2

(
eu1,ε − eũ1,ε

)
+

(
σ2
ε

ε2
− σε
ε2

)(
eu1,ε+u2,ε − eũ1,ε+ũ2,ε

)
.

Using the mean value theorem, we have that

H1,ε(x) = − 1

ε2
g′(ξ1,ε) (u1,ε − ũ1,ε) +

σε
ε2
g′(ξ2,ε) (u2,ε − ũ2,ε)

− σ2
ε

ε2
eη2,ε (u2,ε − ũ2,ε) +

σε
ε2
eη1,ε (u1,ε − ũ1,ε)

+

(
σ2
ε

ε2
− σε
ε2

)
eζ1,ε+ζ2,ε (u1,ε + u2,ε − ũ1,ε − ũ2,ε) ,
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where ξi,ε and ηi,ε are numbers between ui,ε and ũi,ε for i = 1, 2, and
∑2
i=1 ζ,ε

lies between
∑2
i=1 ui,ε and

∑2
i=1 ũi,ε. In view of Theorem 1.1, we have

(35) ‖ξ1,ε −
N∑
j=1

Uj,ε(x)χd(|x− pj |)‖L∞(T) = O(ε2) and ‖ξ2,ε‖L∞(T) = O(ε2)

as ε→ 0. From our assumption (8) and Theorem 2.7, we get that

‖u1,ε − ũ1,ε‖L∞(T)(36)

≤ C
∥∥∥{− g′(ξ1,ε) +

N∑
j=1

g′ (Uj,ε(x))χd(|x− pj |)

+g′ (0)
(

1−
N∑
j=1

χd(|x− pj |)
)}

(u1,ε − ũ1,ε)
∥∥∥
L∞(T)

+ C
∥∥∥σεg′(ξ2,ε) (u2,ε−ũ2,ε)−σ2

εe
η2,ε (u2,ε−ũ2,ε)+σεe

η1,ε (u1,ε−ũ1,ε)
∥∥∥
L∞(T)

+ C
∥∥∥ (σ2

ε − σε
)
eζ1,ε+ζ2,ε (u1,ε + u2,ε − ũ1,ε − ũ2,ε)

∥∥∥
L∞(T)

,

where a uniform constant C > 0 is independent of ε > 0. Since the first term
on the right-hand side of (36) is given by

‖{−g′(ξ1,ε)+g′(0)+

N∑
j=1

[g′(Uj,ε(x))−g′(0)]χd(|x−pj |)}(u1,ε−ũ1,ε)‖L∞(T) =: I1,

by utilizing (35) and the exponential decay estimate (28) of Uj,ε, it holds that

I1 = O(ε2)‖(u1,ε − ũ1,ε)‖L∞(T) as ε→ 0.

Here, we also note that ui,ε < 0, ũi,ε < 0 and Uj,ε < 0. Hence by the assump-
tion (8), we have

‖u1,ε − ũ1,ε‖L∞(T)

≤ o(1)‖(u1,ε − ũ1,ε)‖L∞(T) +O(ε2)‖u2,ε − ũ2,ε‖L∞(T) as ε→ 0.

This implies that

(37) ‖u1,ε − ũ1,ε‖L∞(T) ≤ O(ε2)‖u2,ε − ũ2,ε‖L∞(T) as ε→ 0.

Next, the difference u2,ε − ũ2,ε satisfies

L2,ε(u2,ε − ũ2,ε) = ∆(u2,ε − ũ2,ε) +
g′ (0)

ε2
(u2,ε − ũ2,ε)

=
g′ (0)

ε2
(u2,ε − ũ2,ε) +H2,ε(x),
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where

H2,ε(x)

= − 1

ε2
(g(u2,ε)− g(ũ2,ε)) +

σε
ε2

(g(u1,ε)− g(ũ1,ε))−
σ2
ε

ε2

(
eu1,ε − eũ1,ε

)
+
σε
ε2

(
eu2,ε − eũ2,ε

)
+

(
σ2
ε

ε2
− σε
ε2

)(
eu1,ε+u2,ε − eũ1,ε+ũ2,ε

)
.

By the mean value theorem, we have that

H2,ε(x)

= − 1

ε2
g′(ξ2,ε) (u2,ε − ũ2,ε) +

σε
ε2
g′(ξ1,ε) (u1,ε − ũ1,ε)−

σ2
ε

ε2
eη1,ε (u1,ε − ũ1,ε)

+
σε
ε2
eη2,ε (u2,ε − ũ2,ε) +

(
σ2
ε

ε2
− σε
ε2

)
eζ1,ε+ζ2,ε (u1,ε + u2,ε − ũ1,ε − ũ2,ε) ,

where ξi,ε and ηi,ε are numbers between ui,ε and ũi,ε for i = 1, 2, and
∑2
i=1 ζ,ε

lies between
∑2
i=1 ui,ε and

∑2
i=1 ũi,ε. Here, we also note that ui,ε < 0 and

ũi,ε < 0. Then it holds from Theorem 2.7 that

‖u2,ε − ũ2,ε‖L∞(T)

≤ C
∥∥∥(g′(0)− g′(ξ2,ε)

)
(u2,ε − ũ2,ε)

∥∥∥
L∞(T)

+ C
∥∥∥σεg′(ξ1,ε) (u1,ε−ũ1,ε)−σ2

εe
η1,ε (u1,ε−ũ1,ε)+σεe

η2,ε (u2,ε−ũ2,ε)
∥∥∥
L∞(T)

+ C
∥∥∥ (σ2

ε − σε
)
eζ1,ε+ζ2,ε (u1,ε + u2,ε − ũ1,ε − ũ2,ε)

∥∥∥
L∞(T)

.

Here a uniform constant C > 0 is independent of ε > 0. Thus using (35) and
the assumption (8), we deduce that

‖u2,ε − ũ2,ε‖L∞(T) ≤ o(1)‖(u2,ε − ũ2,ε)‖L∞(T) +O(ε2)‖u1,ε − ũ1,ε‖L∞(T),

as ε→ 0, which implies that

(38) ‖u2,ε − ũ2,ε‖L∞(T) ≤ O(ε2)‖u1,ε − ũ1,ε‖L∞(T) as ε→ 0.

Therefore the estimations (37) and (38) yield that (u1,ε, u2,ε) ≡ (ũ1,ε, ũ2,ε) in
T for small ε > 0. This completes the proof of the uniqueness of topological
solutions to (1) for large α > 0. �
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