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EVEN 2-UNIVERSAL QUADRATIC FORMS OF RANK 5

Yun-Seong Ji, Myeong Jae Kim, and Byeong-Kweon Oh

Abstract. A (positive definite integral) quadratic form is called even 2-

universal if it represents all even quadratic forms of rank 2. In this article,
we prove that there are at most 55 even 2-universal even quadratic forms

of rank 5. The proofs of even 2-universalities of some candidates will be

given so that exactly 20 candidates remain unproven.

1. Introduction

A positive definite integral quadratic form

f(x1, x2, . . . , xn) =

n∑
i,j=1

aijxixj (aij = aji ∈ Z)

of rank n is called universal if it represents all positive integers, that is, the dio-
phantine equation f(x1, x2, . . . , xn) = N has an integer solution for any positive
integer N . After Lagrange’s celebrated four square theorem, which implies that
the quaternary quadratic form x2+y2+z2+t2 is universal, a number of univer-
sal quaternary quadratic forms are known (see, for example, [19] and [21]). One
may easily show that there does not exist a positive definite integral universal
quadratic form of rank 3. In 2002, Conway and Schneeberger proved that there
are exactly 204 positive definite integral universal quadratic forms of rank 4.
Furthermore, they proved the so called “15-Theorem”, which states that every
positive definite integral quadratic form that represents 1, 2, 3, 5, 6, 7, 10, 14, and
15 is, in fact, universal, irrespective of its rank (see [1]). Recently, Bhargava and
Hanke [2] proved the “290-Theorem”, which states that every positive definite
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integer-valued quadratic form represents all positive integers if it represents

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29,
30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290.

Here, a quadratic form f(x1, x2, . . . , xn) is called “integer-valued”, if f(x1, . . . ,
xn) is always an integer for any integral vector (x1, x2, . . . , xn) ∈ Zn. Hence
any integral quadratic form is integer-valued, whereas the converse is not true
in general.

From now on, we always assume that a quadratic form is “positive definite”
and “integral”.

As a natural generalization, a quadratic form is called n-universal if it repre-
sents all quadratic forms of rank n. In 1998, Kim and his collaborators proved
in [11] that there are exactly eleven 2-universal quinary quadratic forms (for
higher rank cases, see [10] and [16]). To generalize this result to the integer-
valued case, we consider even quadratic forms obtained from integer-valued
quadratic forms by scaling 2. A quadratic form f(x) is called even if f(x) is
even for any vector x. A quadratic form is called even 2-universal if it repre-
sents all even binary quadratic forms. In this article, we show that there are at
most 55 even 2-universal even quinary quadratic forms. Furthermore, we prove
even 2-universalities of some candidates so that exactly 20 candidates remain
unproven. Even 2-universal even quinary quadratic forms and their candidates
are listed in Tables 4 and 5. We conjecture that the remaining 20 candidates
are also even 2-universal.

To explain more precisely, we adopt lattice-theoretic language. A Z-lattice L
is a finitely generated free Z-module equipped with a nondegenerate symmetric
bilinear form B such that B(L,L) ⊂ Z. The corresponding quadratic map Q
is defined by Q(v) = B(v,v) for any v ∈ L.

Let L = Zx1 + Zx2 + · · ·+ Zxn be a Z-lattice. The quadratic form fL cor-
responding to L is defined by fL(x1, x2, . . . , xn) =

∑
B(xi,xj)xixj . Further-

more, the corresponding symmetric matrix ML is defined by ML = (B(xi,xj)),
which is called the matrix presentation of L. If L admits an orthogonal basis
{x1, . . . ,xn}, then we call L diagonal and simply write L = 〈Q(x1), . . . , Q(xn)〉.
The Z-lattice L is called positive definite or simply positive if Q(v) > 0 for any
v ∈ L − {0}. The ideal of Z generated by B(L,L) is called the scale of L,
which is denoted by s(L), and the ideal generated by Q(v) for v ∈ L is called
the the norm of L, which is denoted by n(L). A Z-lattice L is called integral
if s(L) ⊆ Z, and is called integer-valued if n(L) ⊆ Z. We say L is even if
n(L) ⊆ 2Z. As mentioned above, we always assume that any Z-lattice is pos-
itive definite and integral, unless stated otherwise. For any positive integer a,
La is the Z-lattice obtained from L by scaling L⊗Q by a. For any prime p, we
define Lp = L⊗ Zp, which is a Zp-lattice. We say L is a primitive Z-lattice if
there does not exist an integral Z-lattice in L⊗Q properly containing L. The
primitiveness of a Zp-lattice Lp is defined similarly.
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For a Z-lattice `, we say that L represents `, and we write ` −→ L, if there
is an injective Z-linear map σ from ` to L such that

B(σ(v), σ(w)) = B(v,w) for any v,w ∈ `.
Such a linear map σ is called a representation. If the linear map σ is bijective,
then we say ` is isometric to L, and we write ` ' L. The representation and
the isometry between Zp-lattices are defined similarly for any prime p. We say
` is locally isometric to L if `p ' Lp for any prime p. The genus gen(L) of the
Z-lattice L is the set of Z-lattices which are locally isometric to L. The set of
isometric classes in the genus of L is denoted by gen(L)/∼. The class number
h(L) of L is the number of isometric classes in the genus of L. It is well known
that h(L) is finite for any Z-lattice L. We say L is locally (even) 2-universal if
Lp represents all (even, respectively) Zp-lattices of rank 2 for any prime p. It is
well known that any Z-lattice L that is locally (even) 2-universal and h(L) = 1
is (even) 2-universal, which is called strongly (even, respectively) 2-universal.
We say L is almost 2-universal if L represents almost all binary Z-lattices.

For a binary quadratic form f(x, y) = ax2 + 2bxy + cy2, we will use the
notation f = [a, 2b, c]. To present a Z-lattice with rank greater than 2, we
adopt the notation that is given by Conway and Sloane in [4] (see also [5]).

Any unexplained notation and terminology can be found in [15] or [18].

2. Even 2-universal even Z-lattices of rank 5

The aim of this section is to find all candidates of even 2-universal even Z-
lattices of rank 5. Throughout this section, quinary Z-lattices with ∗-mark are
not yet determined to be even 2-universal and quinary Z-lattices with †-mark
are of class number bigger than 1. Let L = Zx1 + Zx2 + · · ·+ Zx5 be an even
2-universal Z-lattice of rank 5, which is not necessarily even. If we define

L(e) = {v ∈ L : Q(v) ≡ 0 (mod 2)},
then one may easily show that L(e) is an even Z-sublattice of L. Furthermore,
any even Z-lattice that is represented by L is also represented by L(e). Hence
L(e) is also even 2-universal. Therefore, in some sense, it suffices to find all
candidates of even 2-universal even quinary Z-lattices.

A Z-sublattice of L generated by vectors v ∈ L such that Q(v) = 2 is
denoted by RL. Note that RL is isometric to an orthogonal direct sum of root
lattices An and Dm for some integers n and m less than or equal to 5.

To find all candidates of even 2-universal even quinary Z-lattices, we will
use, so called, the escalation method. We assume that {xi}5i=1 is a Minkowski
reduced basis for L such that Q(x1) ≤ Q(x2) ≤ · · · ≤ Q(x5). For k ≤ 4,
we find an even binary Z-lattice that is not represented by a k × k section
Zx1 +Zx2 + · · ·+Zxk of L, though it is represented by L itself by assumption.
The following lemma is very useful to give an upper bound of the (k + 1)-
th successive minimum mk+1(L) of L. For the definition of the successive
minimum and its basic property, see Chapter 12 of [3].
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Lemma 2.1. Let ` be a Z-lattice of rank n and let M = Zx1 +Zx2 + · · ·+Zxm

be a Z-lattice of rank m greater than n, where {xi}mi=1 is a Minkowski reduced
basis such that Q(x1) ≤ Q(x2) ≤ · · · ≤ Q(xm). If ` is represented by M , but is
not represented by the k × k section Zx1 + Zx2 + · · ·+ Zxk of M , then

mk+1(M) ≤

{
mn(`) if n ≥ k + 1,

C4(k)C4(k − 1) · · ·C4(n)mn(`) otherwise,

where the constant C4(k), which is defined in [3], depends only on k.

Proof. Assume that n ≥ k + 1. Since ` −→M , mk+1(M) ≤ mk+1(`) ≤ mn(`).
Now, assume that n ≤ k. Let φ : ` → M be a representation and let

Zy1 + Zy2 + · · · + Zyn be a sublattice of φ(`) such that Q(yi) = mi(`) for
any i = 1, 2, . . . , n. From the assumption, there is an integer j0 such that
yj0 6∈ Zx1 + Zx2 + · · ·+ Zxk. Hence for any j such that n ≤ j ≤ k,

mj+1(M) ≤ max{Q(xj), Q(yj0)} ≤ max{Q(xj),mn(`)}.

Note that there is a constant depending only on j such that

Q(xj) ≤ C4(j)mj(M).

Since mn(M) ≤ mn(`) and C4(n) ≥ 1,

mn+1(M) ≤ max{C4(n)mn(M),mn(`)} ≤ C4(n)mn(`).

Now the lemma follows from the induction. �

Remark 2.2. Note that C4(k) = 1 for any k less than or equal to 4 and C4(5) =
5
4 (for this, see [20]). Therefore, if n = 2 < k ≤ 4, then we have mk+1(M) ≤
m2(`).

Lemma 2.3. Let L = Zx1+Zx2+· · ·+Zx5 be an even Z-lattice of rank 5, where
{xi}5i=1 is a Minkowski reduced basis such that Q(x1) ≤ Q(x2) ≤ · · · ≤ Q(x5).
If m5(L) ≤ 6, then Q(xi) = mi(L) for any i = 1, 2, . . . , 5.

Proof. Note that mi(L) ≤ Q(xi) ≤ C4(i)mi(L) (see Theorem 3.1 of Chapter
12 in [3]). Since we are assuming that L is even, and C4(i) = 1 for any i ≤ 4,
C4(5) = 5

4 , we have Q(xi) = mi(L) for any i = 1, 2, . . . , 5. �

Theorem 2.4. For any even 2-universal even Z-lattice L of rank 5, we have

m1(L) = m2(L) = m3(L) = 2, 2 ≤ m4(L) ≤ 4, and 2 ≤ m5(L) ≤ 6.

Furthermore, there are at most 55 even 2-universal even Z-lattices of rank 5,
which are listed in Tables 4 and 5.

Proof. Let L be an even 2-universal even Z-lattice of rank 5. Since A1 ⊥
A1 −→ RL and A2 −→ RL, the rank of RL should be greater than 2. If the
rank of RL is 3, then RL must be isometric to either A3 or A1 ⊥ A2.
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First, assume that RL ' A3. Since [2, 2, 4] X−→ A3, m4(L) = 4 by Lemma
2.1. Note that any Z-lattice M of rank 4 containing A3 with m4(M) = 4 is
isometric to one of

A3 ⊥ 〈4〉, A352[1 1
4 ], and A312[2 1

2 ].

For each quaternary Z-lattice given above, since

[2, 2, 4] X−→ A3 ⊥ 〈4〉, [4, 4, 4] X−→ A352[1 1
4 ], and [4, 2, 4] X−→ A312[2 1

2 ],

we may conclude that m5(L) = 4 by Lemma 2.1. Therefore, after a suitable
base change, one may easily show, by Lemma 2.3, that all possible candidates
of L in this case are of the form

(ij, kl, a) :=


2 1 0 0 0
1 2 1 i k
0 1 2 j l
0 i j 4 a
0 k l a 4

 ,

where (i, j), (k, l) = (0, 0), (0, 1), (1, 0) and a = 0,±1,±2. Since (ij, kl, a) '
(kl, ij, a), there are only 30 possible candidates in this case, which is listed
in Table 1. Each binary Z-lattice in the right hand side of Table 1 is not

Table 1. The case when RL ' A3

L = (ij, kl, a)

(00, 00, a), a = 0,±1,±2 [2, 2, 4]

(00, 01, a), a = 0,±1, (01, 01, b), b = 0, 1 [4, 4, 4]

(00, 10, 0) [4, 2, 4]

(10, 10, 1) [6, 6, 10]

(01, 01,−2) RL ' D4

(01, 10, 2) RL ' A4

(10, 10,−1) RL ' A1 ⊥ A3

(10, 10,−2) dL = 0

A3(408)[2 1
2
1
2 ] ' (00, 10,±2) ' (10, 10, a), a = 0, 2 Strongly even

2-universalA3(10012)[1 1
2
1
4 ] ' (01, 01,−1) ' (01, 10, a), a = 1,−2

A3(4036)[1 1
2
1
4 ]† ' (00, 01,±2) ' (01, 01, 2) Even 2-universal

A3(4212)[20 1
2 ]∗ ' (00, 10,±1)

Candidates
A3(12−414)[1 1

4
1
2 ]∗ ' (01, 10, 0) ' (01, 10,−1)

represented by all of quinary Z-lattices in the corresponding left hand side.
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Note that the root sublattices of some candidates are not isometric to A3. The
proof of even 2-universality of A3(4036)[1 1

2
1
4 ] is given in Corollary 3.5.

Now, assume that RL ' A1 ⊥ A2. Since [2, 0, 4] X−→ A1 ⊥ A2, we have
m4(L) = 4 by Lemma 2.1. Note that any Z-lattice M of rank 4 containing
A1 ⊥ A2 with m4(M) = 4 is isometric to one of

A1 ⊥ A2 ⊥ 〈4〉, A1 ⊥ A230[1 1
3 ], A114[1 1

2 ] ⊥ A2, and A1A2102[11 1
6 ].

One may easily check that

[4, 4, 4] X−→ A1 ⊥ A2 ⊥ 〈4〉, [4, 4, 4] X−→ A1 ⊥ A230[1 1
3 ],

[4, 4, 4] X−→ A114[1 1
2 ] ⊥ A2, and [6, 0, 6] X−→ A1A2102[11 1

6 ].

Therefore, for the first three cases, we have m5(L) = 4, and in the last
case, we have m5(L) ≤ 6. Since each case can be done in a similar man-
ner, we only consider the last case. Note that there are only 3 new candi-
dates of even 2-universal Z-lattices in the first three cases, which are A1 ⊥
A2(4222)[1 1

3
1
3 ], A1 ⊥ A2(10510)[1 1

3
1
3 ], and A2 ⊥ A1(4010)[1 1

2
1
2 ]. The first two

quinary Z-lattices are, in fact, even 2-universal. The proof of even 2-universality
of the first (second) one is given in Corollary 3.14 (Theorem 3.8, respectively).
The third one is a candidate.

In the last case, one may easily show that all possible candidates are the
followings:

(ij, a, 4) :=


2 0 0 1 i
0 2 1 0 0
0 1 2 1 j
1 0 1 4 a
i 0 j a 4

 or (kl, b, 6) :=


2 0 0 1 k
0 2 1 0 0
0 1 2 1 l
1 0 1 4 b
k 0 l b 6

 ,

where a, b = 0,±1,±2 and i, j, k, l = 0, 1. As given in Table 2, there are exactly
two strongly even 2-universal Z-lattices and 13 candidates up to isometry in
this case.

Now, assume that the rank of RL is 4. Then RL is isometric to one of

A4, D4, A1 ⊥ A3, A2 ⊥ A2, and A1 ⊥ A1 ⊥ A2.

One may easily check that

[4, 4, 4] X−→ A4, [2, 2, 4] X−→ D4, [6, 0, 6] X−→ A1 ⊥ A3,

[2, 0, 4] X−→ A2 ⊥ A2, and [4, 4, 6] X−→ A1 ⊥ A1 ⊥ A2.

Therefore, m5(L) ≤ 6 in all cases. If RL ' A4, then one may easily show that
all possible candidates are

A4 ⊥ 〈4〉, A480[1 1
5 ], and A470[2 1

5 ].

The first two quinary Z-lattices do not represent [4, 4, 4] and the third one
is strongly even 2-universal. If RL ' D4, then all possible candidates are
D412[2 1

2 ] and D4 ⊥ 〈4〉. Note that the former is strongly even 2-universal and
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Table 2. The case when RL ' A1 ⊥ A2

L = (ij, a, 4) or (kl, b, 6)

(01, 0, 4) ' (11,−1, 6), (01, 1, 6) [6, 0, 6]

(01, 2, 6) ' (10, 2, 6) ' (10,−1, 6) [10, 10, 10]

(10,−2, 4) ' (11,−2, 6), (11,−1, 4) RL ' A1 ⊥ A3

(01,−2, 4) RL ' A4

(11,−2, 4) dL < 0

A1A2(16422)[11 1
3
1
6 ] ' (01, 1, 4) ' (10,−2, 6),

A1A2(8030)[11 1
2
1
6 ] ' (11, 0, 4) ' (01,−1, 4)

Strongly even

2-universal

A1A2102[11 1
6 ] ⊥ 〈4〉∗ ' (00, 0, 4),

A1A2(4−294)[11 1
3
1
6 ]∗ ' (00, 1, 4) ' (00,−1, 4),

A1A2(4066)[11 1
2
1
6 ]∗ ' (00, 2, 4) ' (00,−2, 4) ' (11, 2, 4),

A1A2(14020)[11 1
6
1
3 ]∗ ' (01, 2, 4) ' (10, 2, 4) ' (10,−1, 4),

A1A2(14−426)[11 1
6
1
3 ]∗ ' (10, 0, 4) ' (10, 1, 4),

A1A2(6048)[11 1
2
1
6 ]∗ ' (11, 1, 4) ' (01,−2, 6),

A1A2102[11 1
6 ] ⊥ 〈6〉∗ ' (00, 0, 6),

A1A2(6096)[11 1
6
1
6 ]∗ ' (00, 1, 6) ' (00,−1, 6),

A1A2(6078)[11 1
3
1
6 ]∗ ' (00, 2, 6) ' (00,−2, 6) ' (11, 2, 6),

A1A2(14238)[11 1
3
1
6 ]∗ ' (01, 0, 6),

A1A2(10446)[11 1
3
1
6 ]∗ ' (01,−1, 6) ' (11, 0, 6),

A1A2(22−828)[11 1
3
1
6 ]∗ ' (10, 0, 6) ' (10, 1, 6),

A1A2(8262)[11 1
3
1
6 ]∗ ' (11, 1, 6)

Candidates

the latter does not represent [2, 2, 4]. Assume that RL ' A1 ⊥ A3. In this
case, all possible candidates are

A1 ⊥ A3 ⊥ 〈4〉, A1 ⊥ A352[1 1
4 ]†, A1 ⊥ A3 ⊥ 〈6〉†, A1 ⊥ A384[1 1

4 ]∗,

A1 ⊥ A312[2 1
2 ], A3 ⊥ A114[1 1

2 ]†, A1 ⊥ A320[2 1
2 ]†, A3 ⊥ A122[1 1

2 ]†,

A1A344[11 1
4 ], A1A310[12 1

2 ], A1A376[11 1
4 ]∗, and A1A318[12 1

2 ].

Among them, one may easily check that

A1 ⊥ A3 ⊥ 〈4〉, A1 ⊥ A312[2 1
2 ], A1A344[11 1

4 ], and A1A310[12 1
2 ]
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are strongly even 2-universal Z-lattices. It is known that L = I3 ⊥ A1 ⊥ 〈5〉
is almost 2-universal, that is, L represents all binary Z-lattices except [3, 0, 3]
(see [7]). Hence the Z-lattice L(e) = A1 ⊥ A320[2 1

2 ] is even 2-universal. Note

that [6, 0, 6] X−→ A1A318[12 1
2 ]. The even 2-universalities of the Z-lattices A3 ⊥

A114[1 1
2 ] and A1 ⊥ A3 ⊥ 〈6〉 are proved in [12]. the even 2-universality of

A1 ⊥ A352[1 1
4 ] (A3 ⊥ A122[1 1

2 ]) will be proved in Theorem 3.17 (Corollary
3.12, respectively). If RL ' A2 ⊥ A2, then all possible candidates are

A2 ⊥ A2 ⊥ 〈4〉, A2 ⊥ A230[1 1
3 ]†, and A2A224[11 1

3 ].

The Z-lattice A2A224[11 1
3 ] is strongly even 2-universal and one may easily

check that [6, 2, 6] X−→ A2 ⊥ A2 ⊥ 〈4〉. The even 2-universality of the Z-lattice
A2 ⊥ A230[1 1

3 ], which has class number two, will be proved in Theorem 3.2.
Finally, if RL ' A1 ⊥ A1 ⊥ A2, then one may easily check that all possible
candidates are

A1 ⊥ A1 ⊥ A2 ⊥ 〈4〉†, A1 ⊥ A1 ⊥ A230[1 1
3 ]†, A1 ⊥ A2 ⊥ A114[1 1

2 ]†,

A1 ⊥ A1A2102[11 1
6 ]†, A1A1A284[111 1

6 ], A2 ⊥ A1A112[11 1
2 ],

A1 ⊥ A1 ⊥ A2 ⊥ 〈6〉, A1 ⊥ A1 ⊥ A248[1 1
3 ], A1 ⊥ A2 ⊥ A122[1 1

2 ],

A1 ⊥ A1A2174[11 1
6 ]∗, A1A1A2156[111 1

6 ]∗, and A2 ⊥ A1A120[11 1
2 ]†.

Among them, both A1A1A284[111 1
6 ] and A2 ⊥ A1A112[11 1

2 ] are strongly even
2-universal. One may easily check that none of the Z-lattices

A1 ⊥ A1 ⊥ A2 ⊥ 〈6〉, A1 ⊥ A1 ⊥ A248[1 1
3 ], and A1 ⊥ A2 ⊥ A122[1 1

2 ]

represent [4, 4, 6]. The proof of the even 2-universality of the Z-lattice A1 ⊥
A1 ⊥ A2 ⊥ 〈4〉 is given in [12]. The even 2-universalities of the Z-lattices

A1 ⊥ A1 ⊥ A230[1
1

3
], A1 ⊥ A2 ⊥ A114[1

1

2
],

A1 ⊥ A1A2102[11
1

6
], and A2 ⊥ A1A120[11

1

2
]

will be proved in Theorems 3.15, 3.16, 3.18 and Corollary 3.10, respectively.
Finally, if the rank of RL is 5, then RL is isometric to one of

A5, D5, A1 ⊥ D4, A1 ⊥ A4, A2 ⊥ A3,

A1 ⊥ A2 ⊥ A2, A1 ⊥ A1 ⊥ A1 ⊥ A†2, and A1 ⊥ A1 ⊥ A3.

All Z-lattices except A1 ⊥ A1 ⊥ A1 ⊥ A2 are strongly even 2-universal. The
proof of the even 2-universality of the Z-lattice A1 ⊥ A1 ⊥ A1 ⊥ A2 is given in
[12]. This completes the proof. �

3. The proofs

In this section, we prove the even 2-universalities of some candidates which
are given in the previous section. To do this, we introduce various method on
the representations of binary Z-lattices. In particular, we modify the method
mainly developed in [9], [11], and [12].
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Lemma 3.1. Let ` be a Z-sublattice of E8 with rank 6 such that `2 is isometric
to none of the followings:

[2, 2, 2] ⊥ [2, 2, 2] ⊥ [4, 4, 4],

[0, 2, 0] ⊥ [4, 4, 4] ⊥ [0, 4, 0],

[4, 4, 4] ⊥ [4, 4, 4] ⊥ [4, 4, 4].

Then ` is represented by E7 ⊥ A1.

Proof. Since the class number of E7 ⊥ A1 is one, and (E7 ⊥ A1)p ' (E8)p
for any odd prime p, it is sufficient to show that `2 → (E7 ⊥ A1)2. One may
easily check by using Theorem 3 of [17] that if `2 is isometric to none of the
Z2-lattices given above, `2 is represented by (E7 ⊥ A1)2. �

Theorem 3.2. The quinary Z-lattice A2 ⊥ A230[1 1
3 ] is even 2-universal.

Proof. Let ` be any even Z-lattice of rank 2. Since any orthogonal complement
of A4 in E7 is isometric to A230[1 1

3 ], it suffices to show that L = A4 ⊥ ` −→
E7 ⊥ A2. We know

gen(E7 ⊥ A2)/∼ = {E7 ⊥ A2, E8 ⊥ 〈6〉}.

Since any Z-lattice of rank 6 is locally represented by E7 ⊥ A2, L = A4 ⊥ `
is represented by E7 ⊥ A2 or E8 ⊥ 〈6〉. Assume that there is a representation
φ : L = A4 ⊥ ` 7→ E8 ⊥ 〈6〉. Then φ(L) ∩ E8 ' A4 ⊥ φ(`) ∩ E8 −→ E8. Since
(A4)2 ' [0, 2, 0] ⊥ [2, 2, 2], we have φ(L) ∩ E8 −→ E7 ⊥ A1 by Lemma 3.1.
Therefore, we have L −→ E7 ⊥ A1 ⊥ 〈6〉 −→ E7 ⊥ A2, as desired. �

Let In be the Z-lattice of rank n whose corresponding symmetric matrix is
the identity matrix.

Lemma 3.3. Let ` be a Z-lattice of rank 1 or 2 that is represented by I3. Then
for any odd prime p,

r(p`, I3)− r(`, I3) > 0.

Proof. Since the class number of I3 is one, one may easily check by using the
Minkowski-Siegel formula that

r(p`, I3)

r(`, I3)
=
αp(p`, I3)

αp(`, I3)
,

where αp(·, ·) is the local density over Zp. Hence it suffices to show that the
right hand side is greater than 1. For the proof of the case when ` is unary,
see [13]. The proof of the binary case is quite similar to that of the unary case.
For the computation of the local density αp(`, I3) in the case when ` is a binary
Z-lattice, see [14]. �
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Theorem 3.4. The quinary Z-lattice

L = I1 ⊥ A336[1 1
4 ] = 〈1〉 ⊥


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 3


represents all binary Z-lattices except [1, 0, 1].

Proof. Since

{(x1, x2, x3, x4) ∈ I4 :

4∑
i=1

xi ≡ 0 (mod 3)} ' A336[1 1
4 ] =


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 3

 ,

we may assume that

L =
{
x = (x1, x2, . . . , x5) ∈ I5 :

5∑
i=2

xi ≡ 0 (mod 3)
}
.

Let ` = [a, 2b, c] be a binary Z-lattice. Since I5 is 2-universal, there are
two vectors x = (x1, x2, . . . , x5),y = (y1, y2, . . . , y5) ∈ I5 such that Zx + Zy '
[a, 2b, c]. Let E be the set of vectors in Z5 whose coordinates are either 1
or −1. Note that for any e = (e1, . . . , e5) ∈ E, `e = Z(e1x1, . . . , e5x5) +
Z(e1y1, . . . , e5y5) ' `. If there are a subset {i1, . . . , i4} ⊂ {1, 2, 3, 4, 5} and a
vector e = (e1 . . . , e5) ∈ E such that

(3.1)

4∑
k=1

eikxik ≡
4∑

k=1

eikyik ≡ 0 (mod 3),

then ` is represented by L from the above observation. Note that for any
(x, y) ∈ Z2, we have

(3.2)

[
x
y

]
or

[
−x
−y

]
≡
[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]
, or

[
1
−1

]
(mod 3).

Let ai be the number of vectors (xk, yk) for k = 1, 2, . . . , 5 satisfying the
i-th congruence condition in Equation (3.2). If a1 = 4, then clearly, e =
(1, 1, . . . , 1) ∈ E satisfies Equation (3.1). If a2 + a3 + a4 + a5 ≥ 3, then one
may easily show that there is a vector e ∈ E satisfying Equation (3.1). For
example, if a1 = a2 = a3 = a4 = 1, then[

0
0

]
+

[
1
0

]
+

[
0
1

]
+

[
−1
−1

]
≡
[
0
0

]
(mod 3),

and if a2 = 1, a3 = 2, a4 = 1, then[
−1
0

]
+

[
0
1

]
+

[
0
1

]
+

[
1
1

]
≡
[
0
0

]
(mod 3).
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Hence we may assume that a1 = 3. Without loss of generality, assume that
(x1, y1), (x2, y2), and (x3, y3) satisfy the first congruence condition in Equation
(3.2). If at least one vector among (xi, yi) for i = 1, 2, 3 is a nonzero vector,
then by Lemma 3.3, there are integers x̃i’s and ỹi’s such that

Z(x1, x2, x3) + Z(y1, y2, y3) ' Z(x̃1, x̃2, x̃3) + Z(ỹ1, ỹ2, ỹ3),

and at least one among x̃i’s and ỹi’s is not divisible by 3. Therefore, there is a
vector e ∈ E satisfying Equation (3.1) if we choose a basis for ` such that

` = Z(x̃1, x̃2, x̃3, x4, x5) + Z(ỹ1, ỹ2, ỹ3, y4, y5).

Summing up, if ` is a sum of at least 3 nonzero squares in the sense of [8], then
` is represented by L. Note that any binary Z-lattice except [1, 0, 1] is a sum
of at least 3 nonzero squares by [8]. This completes the proof. �

Corollary 3.5. The Z-lattice L = A3(4036)[1 1
2
1
4 ] is even 2-universal.

Proof. Note that

L ' {x ∈ 〈1〉 ⊥ A336[1 1
4 ] : Q(x) ≡ 0 (mod 2)}.

The corollary follows directly from this. �

As far as the authors know, there is no known general method on finding
all binary Z-lattices that are represented by an arbitrary quinary Z-lattice.
However, in some very special case, there is a method to do this, which is
developed in [11] and [12]. To apply this method to find some even 2-universal
quniary Z-lattices, we explain this method a little bit more precisely. Let
` = [a, 2b, c] be a binary Z-lattice. For any integers s, t, u, we define

`s,t(u) :=

(
a− us2 b− ust
b− ust c− ut2

)
.

Let M be a quaternary Z-lattice with class number one and L = M ⊥ 〈u〉
for some positive integer u. To determine whether or not a binary Z-lattice `
is represented by L, we try to find integers s, t such that `s,t(u) −→M . Since
we are assuming the class number of M is one, it suffices to find integers s, t
such that (`s,t(u))p −→Mp for any prime p, and `s,t(u) is positive definite by
the local-global principle. If p is odd and dM is a square unit in Zp, then Mp is
2-universal over Zp. Assume that p is odd and dM is a nonsquare unit in Zp.
Then Mp represents all binary Zp-lattices that represent a unit in Zp. Hence if
we choose integers s, t such that gcd(a−us2, b−ust) has no odd prime factors
p such that dM is a nonsquare unit in Zp, then (`s,t(u))p −→Mp for any prime
p not dividing 2dM . Note that if the discriminant of a quaternary Z-lattice
M is not a square of an integer, then such primes exist infinitely many. The
following lemma will be used to choose suitable integers s, t in this situation.

Lemma 3.6. For k ≥ 2, let p1 < p2 < · · · < pk be primes and let d be
an integer satisfying gcd(d, p1p2 · · · pk) = 1. If n ≥ p1+k−1

p1−1 2k, then there is a
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number in the set {a, a+d, . . . , a+(n−1)d} that is relatively prime to p1p2 · · · pk
for any integer a.

Proof. See [11]. �

If p is a prime dividing u and s(`) ⊆ pZ, then p divides gcd(a−us2, b−ust)
for any integers s, t. For this difficulty, we consider this case separately.

For each prime p dividing 2dM , we find a suitable condition on s, t such
that (`s,t(u))p −→ Mp. Then we may choose integers s, t suitably so that
(`s,t(u))p −→Mp for any prime p | 2dM by using Chinese Remainder Theorem.
The following lemma shows that `s,t(u) is positive definite if a is sufficiently
large.

Lemma 3.7. Let ` = [a, 2b, c] be a Minkowski reduced binary Z-lattice, that is,
2|b| ≤ a ≤ c. If a > 4

3u(s2 + |st|+ t2), then `s,t(u) is positive definite.

Proof. Since a−us2 > 0 by assumption, it suffices to show that the discriminant
of `s,t(u) is positive. Note that

d(`s,t(u)) = ac− b2 − us2c+ 2ustb− ut2a

=
1

4
ac− b2 +

3

4
ac− u(s2c− 2stb+ t2a)

≥ 3

4
ac− u(s2c+ |st|c+ t2c)

=
3

4
c
(
a− 4

3
u(s2 + |st|+ t2)

)
> 0.

This completes the proof. �

Theorem 3.8. The quinary Z-lattice L = A1 ⊥ A2(10510)[1 1
3
1
3 ] is even 2-

universal.

Proof. Note that the quaternary Z-sublattice

M = A2(10510)[1 1
3
1
3 ] '


2 1 0 0
1 2 1 1
0 1 4 −1
0 1 −1 4


of L has class number one, and dM = 52. Let ` = [a, 2b, c] be any even binary
Z-lattice such that 0 ≤ 2b ≤ a ≤ c. We further assume that `5 is a primitive
Z5-lattice. Note that ` −→M ⊥ 〈2〉 = L if and only if `s,t(2) −→M for some
integers s, t.

Since M2 ' [0, 2, 0] ⊥ [0, 2, 0] and dM = 52, Mp is even 2-universal over Zp

for any prime p 6= 5. Furthermore, since the class number of M is one, we have
` −→M if and only if `5 −→M5.

First, assume that `5 represents a unit in Z5. Since we are assuming that `5
is primitive, ord5(d`) = 0 or 1. We first consider the case when a ≥ 12. From
the fact that M5 ' 〈1, 2, 5, 10〉 over Z5, we may easily verify the followings:
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• If ord5(d`) = 1, then ` −→M .
• If d` ≡ 2, 3 (mod 5), then ` −→M .
• If d` ≡ 1, 4 (mod 5) and 5 - a, then `0,1(2) −→M or `0,2(2) −→M .
• If d` ≡ 1, 4 (mod 5) and 5 - c, then `1,0(2) −→M or `2,0(2) −→M .
• If 5 | a, c and 5 - b, then `1,1(2) −→M or `1,−1(2) −→M .

Therefore, ` is represented by L = M ⊥ 〈2〉. Assume that a ≤ 11. Since other
cases can be done in a similar manner, we only consider the case when a = 3.
Then ` = [3, 0, c] or ` = [3, 2, c]. In the former case, we have{

` −→M if c 6≡ ±2 (mod 5),

`1,0(2) −→M otherwise.

Therefore, ` is represented by L. In the latter case, we have
` −→M if c 6≡ 0, 4 (mod 5),

`0,1(2) −→M if c ≡ 0 (mod 5),

`1,0(2) −→M if c ≡ 4 (mod 5).

Now, assume that s(`) ⊆ 5Z. Since the Z-lattice A1 ⊥ A4 is strongly even

2-universal, `
1
5 −→ A1 ⊥ A4. Therefore, we have

` −→
(
A1 ⊥ A4

)5 −→ L.

This completes the proof. �

Theorem 3.9. The quinary Z-lattice L = I2 ⊥ A2 ⊥ 〈5〉 = [1, 0, 1] ⊥ [2, 2, 2] ⊥
〈5〉 represents all binary Z-lattices except [2, 0, 3], [5, 2, 5], [5, 4, 5], and [5, 2, 11].

Proof. Note that the quaternary Z-sublattice M = [1, 0, 1] ⊥ [2, 2, 2] of L
has class number one. Let ` = [a, 2b, c] be any binary Z-lattice such that
0 ≤ 2b ≤ a ≤ c. Note that ` −→M ⊥ 〈5〉 if and only if `s,t(5) −→M for some
integers s, t.

If a ≤ 21, then one may directly show that ` = [a, 2b, c] −→ M ⊥ 〈5〉.
As a sample, we consider the case when a = 5, b = 1. For a binary Z-lattice
` = [5, 2, c], we have
` −→M if c 6≡ 1, 5, 6 (mod 8) and c 6≡ 2 (mod 3),

`0,1(5) −→M or `0,3(5) −→M if c ≡ 1 (mod 4) and c > 45,

`0,2(5) −→M or `0,6(5) −→M if c ≡ 6 (mod 8) and c > 180,

`0,1(5) −→M or `0,2(5) −→M if c ≡ 2 (mod 3) and c > 21.

By a direct calculation for any small integer c, one may conclude that

[5, 2, c] −→M ⊥ 〈5〉 for any c 6= 5, 11.

For a ≤ 21, we may verify that ` −→ L except

(3.3) [2, 0, 3], [5, 2, 5], [5, 4, 5], and [5, 2, 11].
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From now on, we assume that a ≥ 22 and for each prime p ∈ {2, 5}, `p is a
primitive Zp-lattice. Note that `5 is a primitive Z5-lattice if and only if

ord5(d`5) ≤ 1 or `5 ' 〈5,−∆55〉,

where ∆5 is a nonsquare unit in Z×5 .
First, assume further that s(`) 6⊆ 5Z. Note that

M2 ' 〈1, 3, 3, 3〉 and M3 ' 〈1, 1, 2, 6〉.

By checking the local structures of `s,t(5), M over Z2 and over Z3, we obtain
the following properties.

• If a ≡ 7 (mod 8) or c ≡ 7 (mod 8), then for any s, t, (`s,t(5))2 −→M2.
• If a ≡ 3 (mod 8), 2 | s or c ≡ 3 (mod 8), 2 | t, then (`s,t(5))2 −→M2.
• If a ≡ 1 (mod 4), 2 | b and (s, t) ≡ (1, 1) (mod 2), then (`s,t(5))2 −→M2.
• If c ≡ 1 (mod 4), 2 | b and (s, t) ≡ (1, 1) (mod 2), then (`s,t(5))2 −→M2.
• If (a, b, c) ≡ (0, 1, 0) (mod 2) and (s, t) ≡ (0, 0) (mod 2), then (`s,t(5))2 −→
M2.

• If (a, b, c) ≡ (1, 1, 0) (mod 2) and (s, t) ≡ (1, 0) (mod 2), then (`s,t(5))2 −→
M2.

• If (a, b, c) ≡ (0, 1, 1) (mod 2) and (s, t) ≡ (0, 1) (mod 2), then (`s,t(5))2 −→
M2.

• If 3 | ac and 3 - st, then (`s,t(5))3 −→M3.
• If (a, b, c) ≡ (1, 0, 2), (2, 0, 1), (2, 0, 2) (mod 3) and 3 - st, then (`s,t(5))3 −→
M3.

• If (a, b, c) ≡ (1, 1, 2), (1, 2, 1) (mod 3) and st ≡ 1 (mod 3), then (`s,t(5))3 −→
M3.

• If (a, b, c) ≡ (2, 1, 1), (2, 1, 2) (mod 3) and st ≡ 1 (mod 3), then (`s,t(5))3 −→
M3.

• If (a, b, c) ≡ (1, 1, 1), (1, 2, 2) (mod 3) and st ≡ 2 (mod 3), then (`s,t(5))3 −→
M3.

• If (a, b, c) ≡ (2, 2, 1), (2, 2, 2) (mod 3) and st ≡ 2 (mod 3), then (`s,t(5))3 −→
M3.

• If (a, b, c) ≡ (1, 0, 1) (mod 3) and st ≡ 0 (mod 3), then (`s,t(5))3 −→M3.

Since we are assuming that `2 is primitive, ` satisfies one of the first seven cases
given above. Note that if

a ≡ b ≡ c ≡ 0 (mod 2) or a ≡ b ≡ c ≡ 1 (mod 2), a ≡ c (mod 4),

then `2 is not primitive. For any case, one may easily check that there are
s ∈ {1, 2} and t ∈ {0, 1, . . . , 5} such that `s,t′ is represented by M over Z2 and
over Z3 simultaneously, for any t′ such that t′ ≡ t (mod 6). Since other cases
can be done in a similar manner, we only consider the case when `2,−1(5) −→M
over Z2 and over Z3.

Let P = {5, 7, 17, 19, 29, 31, . . .} be the set of primes p such that (dM
p ) = −1.

From the assumption that s(`) 6⊆ 5Z, we have (`2,t(5))5 −→M5 = 〈1, 1, 1,∆5〉
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for any integer t. Let

{p ∈ P− {5} : a− 20 ≡ 0 (mod p)} = {p1, p2, . . . , pk}.
If t is an integer such that (b− 10t, p1p2 · · · pk) = 1 and t ≡ −1 (mod 6), then
we have

`2,t(5) = [a− 20, 2(b− 10t), c− 5t2] =

(
a− 20 b− 10t
b− 10t c− 5t2

)
−→Mp

for any prims p. If k = 0, then (`2,−1(5))p −→ Mp for any prime p. Further-
more, if a ≥ 47, then `2,−1(5) is positive definite by Lemma 3.7 and hence
` −→ L. If 22 ≤ a ≤ 46, then `2,−1(5) is positive definite for any integer c such

that c > 5a+b2+20b
a−20 . In the remaining finite cases, one may directly check that

` −→ L.
If 1 ≤ k ≤ 6, then there is an integer t with

t ∈
{

6m− 1 : −
[k

2

]
≤ m ≤

[k + 1

2

]}
such that (`2,t(5))p −→ Mp for any prime p. If k = 1, 2, similarly to the
case when k = 0, `2,t(5) is positive definite for any integer c such that c >
5t2a+b2−20tb

a−20 , and hence ` −→ L. For any integer c such that c ≤ 5t2a+b2−20tb
a−20 ,

one may directly check that ` −→ L. Since a ≥ 20 + p1 · · · pk, one may easily
check that `2,t(5) is positive definite by Lemma 3.7 for any k = 3, 4, 5, 6.

Finally, assume that k ≥ 7. Since k2k−2 > 7+k−1
7−1 2k, there is an integer

t ∈ {−3k2k−2+5, . . . ,−1, 5, . . . , 3k2k−2−1} such that (b−10t, p1p2 · · · pk) = 1

by Lemma 3.6. Hence (`2,t(5))p −→ Mp for any prime p. Furthermore, since
a ≥ 20 + 7 · 17 · 19 · 29 · 31 · 41k−5, `2,t(5) is positive definite by Lemma 3.7, and
therefore ` −→ L.

Now, assume that s(`) ⊆ 5Z, that is, ` is of the form of [5a1, 10b1, 5c1]. If we

let ˜̀= [a1, 2b1, c1], then ` = (˜̀)5. Since we are assuming that `5 is a primitive

Z5-lattice, ˜̀
5 ' 〈1,−∆5〉. This is equivalent to d(˜̀) ≡ 2, 3 (mod 5). Consider

the quaternary Z-lattice

K = [1, 0, 3] ⊥ [2, 2, 3].

Note that K has class number one and one may easily check that(
K ⊥ 〈5〉

)5 −→ L.

If ˜̀−→ K ⊥ 〈5〉, then (˜̀)5 = ` −→ L. Therefore, it suffices to show that ˜̀ is
represented by K ⊥ 〈5〉.

Consider ˜̀
s,t(5) = [a1−5s2, 2(b1−5st), c1−5t2]. From the fact that 5 - d(˜̀),

we have 5 - d(˜̀
s,t(5)), and ˜̀

s,t(5) −→ K5 for any integers s, t. By checking

the local structures of ˜̀
s,t(5), M over Z2 and over Z3, we obtain the following

properties.

• If a1 ≡ 3 (mod 8) or c1 ≡ 3 (mod 8), then for all s, t, (˜̀
s,t(5))2 −→ K2.
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• If a1 ≡ 7 (mod 8), 2 | s or c1 ≡ 7 (mod 8), 2 | t, then (˜̀
s,t(5))2 −→ K2.

• If a1 ≡ 1 (mod 4), 2 | b1 and (s, t) ≡ (1, 1) (mod 2), then (˜̀
s,t(5))2 −→ K2.

• If c1 ≡ 1 (mod 4), 2 | b1 and (s, t) ≡ (1, 1) (mod 2), then (˜̀
s,t(5))2 −→ K2.

• If (a1, b1, c1) ≡ (0, 1, 0) (mod 2) and (s, t) ≡ (0, 0) (mod 2), then (˜̀
s,t(5))2

−→ K2.
• If (a1, b1, c1) ≡ (1, 1, 0) (mod 2) and (s, t) ≡ (1, 0) (mod 2), then (˜̀

s,t(5))2
−→ K2.
• If (a1, b1, c1) ≡ (0, 1, 1) (mod 2) and (s, t) ≡ (0, 1) (mod 2), then (˜̀

s,t(5))2
−→ K2.

• If 3 | a1c1 and 3 - st, then (˜̀
s,t(5))3 −→ K3.

• If (a1, b1, c1) ≡ (1, 0, 2), (2, 0, 1), (2, 0, 2) (mod 3) and 3 - st, then (˜̀
s,t(5))3

−→ K3.
• If (a1, b1, c1) ≡ (1, 1, 2), (1, 2, 1) (mod 3) and st ≡ 1 (mod 3), then (˜̀

s,t(5))3
−→ K3.

• If (a1, b1, c1) ≡ (2, 1, 1), (2, 1, 2) (mod 3) and st ≡ 1 (mod 3), then (˜̀
s,t(5))3

−→ K3.
• If (a1, b1, c1) ≡ (1, 1, 1), (1, 2, 2) (mod 3) and st ≡ 2 (mod 3), then (˜̀

s,t(5))3
−→ K3.

• If (a1, b1, c1)) ≡ (2, 2, 1), (2, 2, 2) (mod 3) and st ≡ 2 (mod 3), then (˜̀
s,t(5))3

−→ K3.
• If (a1, b1, c1) ≡ (1, 0, 1) (mod 3) and st ≡ 0 (mod 3), then (˜̀

s,t(5))3 −→ K3.

Using the same method to the above, we may show that ˜̀−→ K ⊥ 〈5〉 except
the cases when

˜̀' [2, 2, 2], [2, 2, 14], and [6, 6, 6].

Even in the exceptional cases, one may directly check that (˜̀)5 −→ L. There-
fore, we may conclude that any binary Z-lattice ` whose scale is contained in
5Z is represented by L.

Finally, one may easily check that any binary Z-sublattices of each Z-lattice
in (3.3) with index 2 or 5 are represented by L. This completes the proof. �

Corollary 3.10. The Z-lattice A2 ⊥ A1A120[11 1
2 ] is even 2-universal.

Proof. Let L = I2 ⊥ A2 ⊥ 〈5〉. By Theorem 3.9, L represents all even binary
Z-lattices. Hence its even Z-sublattice

L(e) = A2 ⊥ A1A120[11 1
2 ] = [2, 2, 2] ⊥

2 0 1
0 2 1
1 1 6


also represents all even binary Z-lattices. This completes the proof. �

The proof of the almost 2-universality or even 2-universality of each Z-lattice
L given below is quite similar to the above. So, we only provide the following
data:

(1) quaternary Z-sublattice M of L which has class number one,
(2) the integer u such that M ⊥ 〈u〉 is a Z-sublattice of L,
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(3) conditions for integers s, t such that (`s,t(u))p −→ Mp for each prime
p | 2dM ,

(4) some data for the case when s(`) ⊆ qZ for a prime q | u and
(

dM
q

)
=

−1.

Theorem 3.11. The quinary Z-lattice

L = I3 ⊥ A122[1 1
2 ] = 〈1, 1, 1〉 ⊥ [2, 2, 6]

represents all binary Z-lattices except [3, 0, 3].

Proof. Let M = 〈1, 1, 1, 2〉 and u = 22. Clearly, M ⊥ 〈22〉 is a Z-sublattice of
L. Let ` = [a, 2b, c] be any binary Z-lattice such that `p is a primitive Zp-lattice
for any p ∈ {2, 11}. Then one may easily check the followings:

• If (a, b, c) ≡ (0, 1, 0), (0, 1, 1) (mod 2), then for any s, t, (`s,t(22))2 −→M2.
• If (a, b, c) ≡ (1, 0, 1), (1, 1, 0) (mod 2), then for any s, t, (`s,t(22))2 −→M2.
• If a ≡ 3 (mod 8) or c ≡ 3 (mod 8), then for any s, t, (`s,t(22))2 −→M2.
• If a ≡ 1 (mod 8), 2 - s or c ≡ 1 (mod 8), 2 - t, then (`s,t(22))2 −→M2.
• If a ≡ 5 (mod 8), 2 | s or c ≡ 5 (mod 8), 2 | t, then (`s,t(22))2 −→M2.
• If a ≡ 2 (mod 8), b ≡ 2 (mod 4), 2 - c and (s, t) ≡ (1, 1) (mod 2), then

(`s,t(22))2 −→M2.
• If a ≡ 2 (mod 8), b ≡ 0 (mod 4), 2 - c and (s, t) ≡ (1, 0) (mod 2), then

(`s,t(22))2 −→M2.
• If a ≡ 6 (mod 8), b ≡ 0 (mod 4) and (s, t) ≡ (1, 1) (mod 2), then (`s,t(22))2
−→M2.

• If a ≡ 6 (mod 8), b ≡ 2 (mod 4) and (s, t) ≡ (1, 0) (mod 2), then (`s,t(22))2
−→M2.

Using this information, one may prove that similarly to Theorem 3.9, ` is
represented by L under the assumption that s(`) 6⊆ 11Z. When s(`) ⊆ 11Z, we
consider the quaternary Z-lattice K = 〈1, 1, 1, 11〉. Note that

gen(K)/∼ = {〈1, 1, 1, 11〉, [1, 0, 1] ⊥ [3, 2, 4]}.

It can easily be verified that
(
K ′ ⊥ 〈11〉

)11 −→ L for any K ′ ∈ gen(K). Let
˜̀= [a1, 2b1, c1] be a binary Z-lattice such that (˜̀)11 = `. Since we are assuming

that `p is primitive over Zp for any prime p ∈ {2, 11}, d(˜̀) ≡ 1, 3, 4, 5, or

9 (mod 11), and ˜̀
11 is represented by K11. If there exist integers s, t such

that (˜̀
s,t(11))p −→ Kp for any prime p and ˜̀

s,t(11) is positive definite, then
˜̀
s,t(11) −→ K ′ and ˜̀−→ K ′ ⊥ 〈11〉 for some K ′ ∈ gen(K). Hence we have

` = (˜̀)11 −→
(
K ′ ⊥ 〈11〉

)11 −→ L.

To prove the existence of such integers s, t, one may use

• If (a1, b1, c1) ≡ (1, 0, 1) (mod 2) and (s, t) ≡ (1, 1) (mod 2), then (˜̀
s,t(11))2

−→ K2.
• If (a1, b1, c1) ≡ (0, 1, 0) (mod 2) and (s, t) ≡ (0, 0) (mod 2), then (˜̀

s,t(11))2
−→ K2.
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• If (a1, b1, c1) ≡ (1, 1, 0) (mod 2) and (s, t) ≡ (1, 0) (mod 2), then (˜̀
s,t(11))2

−→ K2.
• If (a1, b1, c1) ≡ (0, 1, 1) (mod 2) and (s, t) ≡ (0, 1) (mod 2), then (˜̀

s,t(11))2
−→ K2.

• If a1 ≡ 1 (mod 8) or c1 ≡ 1 (mod 8), then for any s, t, (˜̀
s,t(11))2 −→ K2.

• If a1 ≡ 5 (mod 8), 2 | s or c1 ≡ 5 (mod 8), 2 | t, then (˜̀
s,t(11))2 −→ K2.

• If a1 ≡ 0 (mod 4), 2 - s or c1 ≡ 0 (mod 4), 2 - t, then (˜̀
s,t(11))2 −→ K2.

• If a1 ≡ 3 (mod 4), 2 | b1 and (s, t) ≡ (1, 1) (mod 2), then (˜̀
s,t(11))2 −→ K2.

• If c1 ≡ 3 (mod 4), 2 | b1 and (s, t) ≡ (1, 1) (mod 2), then (˜̀
s,t(11))2 −→ K2.

Using this information, one may show that ˜̀ is represented by K ′ ⊥ 〈11〉 for

some K ′ ∈ gen(K) except the binary Z-lattices ˜̀ such that

˜̀' [3, 0, 3], [3, 0, 71], [2, 2, 3], [3, 2, 18], [7, 2, 10], [7, 4, 7], [7, 4, 23], or [19, 4, 19].

Even in these exceptional cases, one may directly check that ` = (˜̀)11 −→ L.
Note that any binary Z-sublattice of [3, 0, 3] with index 2 or 11 is represented
by L. This completes the proof. �

Corollary 3.12. The Z-lattice A3 ⊥ A122[1 1
2 ] is even 2-universal.

Proof. Note that if L = I3 ⊥ A122[1 1
2 ], then L(e) ' A3 ⊥ A122[1 1

2 ]. Therefore,
the proof follows directly from Theorem 3.11. �

Theorem 3.13. The Z-lattice L = I1 ⊥ A1 ⊥ A221[1 1
3 ] represents all binary

Z-lattices except I2 = [1, 0, 1].

Proof. In this case, we let

M = I1 ⊥ A221[1 1
3 ] = 〈1〉 ⊥

2 1 0
1 2 1
0 1 3

 and u = 2.

Let ` = [a, 2b, c] be any binary Z-lattice such that `p is primitive over Zp for
any p ∈ {2, 7}. Then we may easily check the followings:

• If (a, b, c) ≡ (0, 1, 0) (mod 2), then for any integer s, t, `s,t −→M2.
• If a ≡ 1 (mod 4) and 2 - s, then (`s,t(2))2 −→M2.
• If c ≡ 1 (mod 4) and 2 - t, then (`s,t(2))2 −→M2.
• If a ≡ 3 (mod 4) and 2 | s, then (`s,t(2))2 −→M2.
• If c ≡ 3 (mod 4) and 2 | t , then (`s,t(2))2 −→M2.
• If a ≡ 3, 4, 6 (mod 7) and s ≡ ±1 (mod 7), then (`s,t(2))7 −→M7.
• If a ≡ 2, 3, 5 (mod 7) and s ≡ ±2 (mod 7), then (`s,t(2))7 −→M7.
• If a ≡ 1, 5, 6 (mod 7) and s ≡ ±3 (mod 7), then (`s,t(2))7 −→M7.
• If a ≡ 0 (mod 7), b 6≡ 0 (mod 7) and 7 - s, then (`s,t(2))7 −→M7.
• If a, b ≡ 0 (mod 7), c 6≡ 0 (mod 7) and 7 - s, then (`s,t(2))7 −→M7.
• If a, b, c ≡ 0 (mod 7), then there is an integer t0 such that for any integer t

with t ≡ t0 (mod 7), (`1,t(2))7 −→M7.
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In the last paragraph, the existence of t0 can be proved as follows: Note that
for a nonsquare unit ∆7 ∈ Z×7 , 〈1, 7〉, 〈∆7, 7∆7〉 −→ M7. Let a = 7a0, b = 7b0,
and c = 7c0, then

d(`s,t(2)) ≡ −14(a0t
2 − 2b0st+ c0s

2) (mod 72).

Since `7 is Z7-primitive, a0, c0 6≡ 0 (mod 7) and d` = 72(a0c0−b20) 6≡ 0 (mod 73).
Hence there is an integer t0 such that a0t

2
0 − 2b0t0 + c0 is a nonsquare modulo

7 (see Theorem 8.2 of Chapter 7 in [6]). Therefore, (`1,t0(2))7 ' 〈1, 7〉 or
〈∆7, 7∆7〉, which is represented by M7. Note that any binary Z-sublattice of
[1, 0, 1] with index 2 or 7 is represented by L. This completes the proof. �

Corollary 3.14. The Z-lattice L = A1 ⊥ A2(4222)[1 1
3
1
3 ] is even 2-universal.

Proof. Note that L = K(e), where K = I1 ⊥ A1 ⊥ A221[1 1
3 ]. Hence the

corollary follows directly from Theorem 3.13. �

Theorem 3.15. The Z-lattice L = A1 ⊥ A1 ⊥ A230[1 1
3 ] is even 2-universal.

Proof. Let M = A1 ⊥ A230[1 1
3 ] = 〈2〉 ⊥

2 1 0
1 2 1
0 1 4

 and u = 2. Note that

M ⊥ 〈2〉 −→ L. Let ` = [a, 2b, c] be any even binary Z-lattice such that `5 is a
primitive Z5-lattice. Then one may easily check the followings:

• If b is odd, then for any integers s, t, (`s,t(2))2 −→M2.
• If a ≡ 1, 3 (mod 5), then (`1,t(2))5 −→M5.
• If a ≡ 2, 4 (mod 5), then (`2,t(2))5 −→M5.
• If a ≡ 0, b 6≡ 0 (mod 5), then (`5,t(2))5 −→M5.
• If a, b ≡ 0, c 6≡ 0 (mod 5), then for any 5 - s, (`s,t(2))5 −→M5.
• If a, b, c ≡ 0 (mod 5), then there is an integer t0 such that for any integer t

with t ≡ t0 (mod 5), (`1,t(2))5 −→M5.

Using this information, one may show that ` is represented by M ⊥ 〈2〉 for any
` such that s(`) 6⊆ 2Z.

It is known that K = I3 ⊥ A110[1 1
2 ] = 〈1, 1, 1〉 ⊥ [2, 2, 3] is 2-universal (see

[11]). Since K2 −→ L, L represents any binary Z-lattice ` such that s(`) ⊆ 2Z.
This completes the proof. �

Theorem 3.16. The Z-lattice L = A1 ⊥ A2 ⊥ A114[1 1
2 ] is even 2-universal.

Proof. LetM = A2 ⊥ A114[1 1
2 ] = [2, 2, 2] ⊥ [2, 2, 4] and u = 2. Let ` = [a, 2b, c]

be any even binary Z-lattice such that `7 is a primitive Z7-lattice. Then one
may easily check the followings:

• If b is odd, then for any integers s, t, (`s,t(2))2 −→M2.
• If a ≡ 3, 4, 6 (mod 7) and s ≡ ±1 (mod 7), then (`s,t(2))7 −→M7.
• If a ≡ 2, 3, 5 (mod 7) and s ≡ ±2 (mod 7), then (`s,t(2))7 −→M7.
• If a ≡ 1, 5, 6 (mod 7) and s ≡ ±3 (mod 7), then (`s,t(2))7 −→M7.
• If a ≡ 0 (mod 7) and b 6≡ 0 (mod 7), then (`7,t(2))7 −→M7.
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• If a, b ≡ 0 (mod 7) and c 6≡ 0 (mod 7), then for any 7 - s, (`s,t(2))7 −→M7.
• If a, b, c ≡ 0 (mod 7), then there is an integer t0 such that for any integer t

with t ≡ t0 (mod 7), (`1,t(2))7 −→M7.

Using this information, one may show that ` is represented by M ⊥ 〈2〉 for any
` such that s(`) 6⊆ 2Z.

One may easily check that K = 〈1, 1, 1, 3, 7〉 is locally 2-universal and(
K ′
)2 −→ L for any K ′ ∈ gen(K). Hence L represents any binary Z-lattice `

such that s(`) ⊆ 2Z. This completes the proof. �

Theorem 3.17. The Z-lattice L = A1 ⊥ A352[1 1
4 ] is even 2-universal.

Proof. Let M = A352[1 1
4 ] =


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 4

 and u = 2. Let ` = [a, 2b, c] be

any even binary Z-lattice such that `13 is a primitive Z13-lattice. Then one
may easily check the followings:

• If b is odd, then for any integers s, t, (`s,t(2))2 −→M2.
• If a ≡ 1, 3, 5, 6, 11, 12 (mod 13), then (`1,t(2))13 −→M13.
• If a ≡ 4, 7, 9 (mod 13), then (`2,t(2))13 −→M13.
• If a ≡ 2, 8 (mod 13), then (`3,t(2))13 −→M13.
• If a ≡ 10 (mod 13), then (`4,t(2))13 −→M13.
• If a ≡ 0 (mod 13) and b 6≡ 0 (mod 13), then (`13,t(2))13 −→M13.
• If a, b ≡ 0 (mod 13) and c 6≡ 0 (mod 13), then (`1,t(2))13 −→M13.

Using this information, one may show that ` is represented by M ⊥ 〈2〉 for any
` such that s(`) 6⊆ 2Z and s(`) 6⊆ 13Z.

Consider the Z-lattice K = 〈1, 1, 1〉 ⊥ [2, 2, 7]. One may easily check that K

is locally 2-universal and
(
K ′
)2 −→ L for any K ′ ∈ gen(K). Hence L represents

any binary Z-lattice ` such that s(`) ⊆ 2Z. Note that if J = A352[1 1
4 ] ⊥ 〈26〉,

then J is locally even 2-universal and (J ′)13 −→ L for any J ′ ∈ gen(J). Hence
L represents any even binary Z-lattice ` such that s(`) ⊆ 13Z. This completes
the proof. �

Theorem 3.18. The Z-lattice L = A1 ⊥ A1A2102[11 1
6 ] is even 2-universal.

Proof. Let M = A1A2102[11 1
6 ] =


2 0 0 1
0 2 1 0
0 1 2 1
1 0 1 4

 and u = 2. Let ` = [a, 2b, c]

be any even binary Z-lattice such that `17 is a primitive Z17-lattice. Then one
may easily check the followings:

• For any integers s, t, (`s,t(2))2 −→M2 (in fact, M2 is even 2-universal).
• If a ≡ 5, 7, 8, 9, 12, 13, 14, 16 (mod 17), then (`1,t(2))17 −→M17.
• If a ≡ 1, 2, 3, 11, 15 (mod 17), then (`2,t(2))17 −→M17.
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• If a ≡ 4, 6 (mod 17), then (`3,t(2))17 −→M17.
• If a ≡ 10 (mod 17), then (`4,t(2))17 −→M17.
• If a ≡ 0 (mod 17) and b 6≡ 0 (mod 17), then (`17,t(2))17 −→M17.
• If a, b ≡ 0 (mod 17) and c 6≡ 0 (mod 17), then (`1,t(2))17 −→M17.

Using this information, one may show that ` is represented by M ⊥ 〈2〉 for
any ` such that s(`) 6⊆ 17Z. Note that if K = A1A2102[11 1

6 ] ⊥ 〈34〉, then K

is locally even 2-universal and (K ′)17 −→ L for any K ′ ∈ gen(L). Hence L
represents any even binary Z-lattice ` such that s(`) ⊆ 17Z. This completes
the proof. �

Table 3. The number of (candidates of) even 2-universal even
Z-lattices of rank 5

RL
Proved

Candidates
h = 1 h ≥ 2

rank(RL) = 5 7 1 0

A4, D4 2 0 0

A1 ⊥ A3 4 5 2

A2 ⊥ A2 1 1 0

A1 ⊥ A1 ⊥ A2 2 5 2

A3 2 1 2

A1 ⊥ A2 2 2 14

Total 20 15 20

Table 4. Even 2-universal even Z-lattices of rank 5

A5, D5, A1 ⊥ A4, A470[2 1
5 ], A1 ⊥ D4, D412[2 1

2 ],

A2 ⊥ A3, A1 ⊥ A1 ⊥ A3, A1 ⊥ A3 ⊥ 〈4〉, A1 ⊥ A3 ⊥ 〈6〉†,

A1 ⊥ A312[2 1
2 ], A1 ⊥ A320[2 1

2 ]
†
, A1 ⊥ A352[1 1

4 ]
†
, A3 ⊥ A114[1 1

2 ]
†
,

A3 ⊥ A122[1 1
2 ]
†
, A3(408)[2 1

2
1
2 ], A3(10012)[1 1

2
1
4 ], A3(4036)[1 1

2
1
4 ]
†
,

A1A344[11 1
4 ], A1A310[12 1

2 ], A2A224[11 1
3 ], A2 ⊥ A230[1 1

3 ]
†
,

A1 ⊥ A2 ⊥ A2, A1 ⊥ A1 ⊥ A1 ⊥ A2
†, A1 ⊥ A1 ⊥ A2 ⊥ 〈4〉†,

A1 ⊥ A1 ⊥ A230[1 1
3 ]
†
, A1 ⊥ A2 ⊥ A114[1 1

2 ]
†
,

A2 ⊥ A1A112[11 1
2 ], A2 ⊥ A1A120[11 1

2 ]
†
,

A1 ⊥ A1A2102[11 1
6 ]
†
, A1A1A284[111 1

6 ], A1 ⊥ A2(4222)[1 1
3
1
3 ]
†
,

A1 ⊥ A2(10510)[1 1
3
1
3 ]
†
, A1A2(16422)[11 1

3
1
6 ], A1A2(8030)[11 1

2
1
6 ]
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Table 5. Candidates of even 2-universal even Z-lattices of
rank 5

A1 ⊥ A384[1 1
4 ], A1A376[11 1

4 ], A3(4212)[20 1
2 ], A3(12−414)[1 1

4
1
2 ],

A1A1A2156[111 1
6 ], A1 ⊥ A1A2174[11 1

6 ],

A1A2102[11 1
6 ] ⊥ 〈4〉, A1A2102[11 1

6 ] ⊥ 〈6〉, A2 ⊥ A1(4010)[1 1
2
1
2 ],

A1A2(4066)[11 1
2
1
6 ], A1A2(4−294)[11 1

3
1
6 ], A1A2(6048)[11 1

2
1
6 ],

A1A2(6078)[11 1
3
1
6 ], A1A2(6096)[11 1

6
1
6 ], A1A2(8262)[11 1

3
1
6 ],

A1A2(10446)[11 1
3
1
6 ], A1A2(14220)[11 1

6
1
3 ], A1A2(14238)[11 1

3
1
6 ],

A1A2(14−426)[11 1
6
1
3 ], A1A2(22−828)[11 1

3
1
6 ]
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