# A NEW CLASSIFICATION OF REAL HYPERSURFACES WITH REEB PARALLEL STRUCTURE JACOBI OPERATOR IN THE COMPLEX QUADRIC 

Hyunjin Lee and Young Jin Suh


#### Abstract

In this paper, first we introduce the full expression of the Riemannian curvature tensor of a real hypersurface $M$ in the complex quadric $Q^{m}$ from the equation of Gauss and some important formulas for the structure Jacobi operator $R_{\xi}$ and its derivatives $\nabla R_{\xi}$ under the Levi-Civita connection $\nabla$ of $M$. Next we give a complete classification of Hopf real hypersurfaces with Reeb parallel structure Jacobi operator, $\nabla_{\xi} R_{\xi}=0$, in the complex quadric $Q^{m}$ for $m \geq 3$. In addition, we also consider a new notion of $\mathcal{C}$-parallel structure Jacobi operator of $M$ and give a nonexistence theorem for Hopf real hypersurfaces with $\mathcal{C}$-parallel structure Jacobi operator in $Q^{m}$, for $m \geq 3$.


## 1. Introduction

We consider the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$ : it is a complex hypersurface in the complex projective space $\mathbb{C} P^{m+1}$ (see Lee and Suh [14], Romero [22], [23], Smyth [24], Suh [27], [28]). The complex quadric can also be regarded as a kind of real Grassmann manifolds of compact type with rank 2 (see Besse [4], Helgason [5], and Knap [11]). Accordingly, the complex quadric $Q^{m}$ admits two important geometric structures, a complex conjugation structure $A$ and a Kähler structure $J$, which anti-commute with each other, that is, $A J=-J A$. Then, for $m \geq 2$, the triple $\left(Q^{m}, J, g\right)$ is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Kobayashi and Nomizu [12], Reckziegel [21]).

In addition to the complex structure $J$ there is another distinguished geometric structure on $Q^{m}$, namely a parallel rank two vector bundle $\mathfrak{A}$ which

[^0]contains an $S^{1}$-bundle of real structures, that is, complex conjugations $A$ on the tangent spaces of $Q^{m}$. The set is denoted by $\mathfrak{A}_{[z]}=\left\{A_{\lambda \bar{z}} \mid \lambda \in S^{1} \subset \mathbb{C}\right\}$, $[z] \in Q^{m}$, and it is the set of all complex conjugations defined on $Q^{m}$. Then $\mathfrak{A}_{[z]}$ becomes a parallel rank 2-subbundle of End $T_{[z]} Q^{m},[z] \in Q^{m}$. This geometric structure determines a maximal $\mathfrak{A}$-invariant subbundle $\mathcal{Q}$ of the tangent bundle $T M$ of a real hypersurface $M$ in $Q^{m}$. Here the notion of parallel vector bundle $\mathfrak{A}$ means that $\left(\bar{\nabla}_{X} A\right) Y=q(X) J A Y$ for any vector fields $X$ and $Y$ on $Q^{m}$, where $\nabla$ and $q$ denote a connection and a certain 1-form defined on $T_{[z]} Q^{m},[z] \in Q^{m}$ respectively (see Smyth [24]).

Recall that a nonzero tangent vector $W \in T_{[z]} Q^{m}$ is called singular if it is tangent to more than one maximal flat in $Q^{m}$. There are two types of singular tangent vectors for the complex hyperbolic quadric $Q^{m}$ :
(a) If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A)=\{X \in$ $\left.T_{[z]} Q^{m} \mid A X=X\right\}$, then $W$ is singular. Such a singular tangent vector is called $\mathfrak{A}$-principal.
(b) If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $Z_{1}, Z_{2} \in$ $V(A)$ such that $W /\|W\|=\left(Z_{1}+J Z_{2}\right) / \sqrt{2}$, then $W$ is singular. Such a singular tangent vector is called $\mathfrak{A}$-isotropic, where $V(A)=\{X \in$ $\left.T_{[z]} Q^{m} \mid A X=X\right\}$ and $J V(A)=\left\{X \in T_{[z]} Q^{m} \mid A X=-X\right\}$ are the $(+1)$-eigenspace and ( -1 )-eigenspace for the involution $A$ on $T_{[z]} Q^{m}$, $[z] \in Q^{m}$.
On the other hand, Okumura [15] proved that the Reeb flow on a real hypersurface in $\mathbb{C} P^{m}=S U_{m+1} / S\left(U_{1} U_{m}\right)$ is isometric if and only if $M$ is an open part of a tube around a totally geodesic $\mathbb{C} P^{k}$ in $\mathbb{C} P^{m}$ for some $k \in\{0, \ldots, m-1\}$. For the complex 2-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)=S U_{m+2} / S\left(U_{2} U_{m}\right)$ a classification was obtained by Berndt and Suh [1]. The Reeb flow on a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is isometric if and only if $M$ is an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right)$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$. For the complex quadric $Q^{m}=S O_{m+2} / S O_{2} S O_{m}$, Berndt and Suh [2] have obtained the following result:

Theorem A. Let $M$ be a real hypersurface in the complex quadric $Q^{m}, m \geq 3$. Then the Reeb flow on $M$ is isometric if and only if $m$ is even, say $m=2 k$, and $M$ is an open part of a tube around a totally geodesic $\mathbb{C} P^{k}$ in $Q^{2 k}$.

Motivated by this result, recently, some new results have been published regarding the real hypersurface with various geometric tools in the complex quadric (see [3], [13], [14], [16], [17], [20], [25] and so on). In this paper, we want to study Reeb parallelism or $\mathcal{C}$-parallelism of the structure Jacobi operator for a real hypersurface in the complex quadric $Q^{m}$ with new geometric ideas.

It is known that Jacobi fields along geodesics of a given Riemannian manifold $(\bar{M}, g)$ satisfy a well known differential equation. That is, if $R$ denotes the curvature operator of $\bar{M}$, and $X$ is a tangent vector field to $\bar{M}$, then the Jacobi operator $R_{X} \in \operatorname{End}\left(T_{p} \bar{M}\right)$ with respect to $X$ at $p \in \bar{M}$, defined by $\left(R_{X} Y\right)(p)=$
$(R(Y, X) X)(p)$ for any $Y \in T_{p} \bar{M}$, becomes a self adjoint endomorphism of the tangent bundle $T \bar{M}$ of $\bar{M}$. Thus, each tangent vector field $X$ to $\bar{M}$ provides a Jacobi operator $R_{X}$ with respect to $X$. In particular, for the Reeb vector field $\xi$, the Jacobi operator $R_{\xi}$ is said to be the structure Jacobi operator.

Indeed, many geometers have considered the fact that a real hypersurface $M$ in Kähler manifolds has parallel structure Jacobi operator (or Reeb parallel structure Jacobi operator, respectively), that is, $\nabla_{X} R_{\xi}=0$ (or $\nabla_{\xi} R_{\xi}=0$, respectively) for any tangent vector field $X$ on $M$. Recently Ki, Pérez, Santos and Suh [9] have investigated Reeb parallel structure Jacobi operator in the complex space form $M^{m}(c), c \neq 0$, and have used it to study some principal curvatures for a tube over a totally geodesic submanifold. In particular, Pérez, Jeong and Suh [7] have investigated real hypersurfaces $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ with parallel structure Jacobi operator, that is, $\nabla_{X} R_{\xi}=0$ for any tangent vector field $X$ on $M$. Jeong, Suh and Woo [8] and Pérez and Santos [18] have generalized such a notion to recurrency of the structure Jacobi operator, that is, $\left(\nabla_{X} R_{\xi}\right) Y=\beta(X) R_{\xi} Y$ for a certain 1-form $\beta$ and any vector fields $X, Y$ on $M$ in $G_{2}\left(\mathbb{C}^{m+2}\right)$ or $\mathbb{C} P^{m}$. In [6], Jeong, Lee, and Suh have considered a Hopf real hypersurface with structure Jacobi operator of Codazzi type, $\left(\nabla_{X} R_{\xi}\right) Y=\left(\nabla_{Y} R_{\xi}\right) X$, in $G_{2}\left(\mathbb{C}^{m+2}\right)$. Moreover, Pérez, Santos and Suh [19] have further investigated the property of Lie $\xi$-parallel structure Jacobi operator in complex projective space $\mathbb{C} P^{m}$, that is, $\mathcal{L}_{\xi} R_{\xi}=0$.

Motivated by these results, in this paper we want to give a classification of Hopf real hypersurfaces in $Q^{m}$ with non-vanishing geodesic Reeb flow and Reeb parallel structure Jacobi operator, that is, $\nabla_{\xi} R_{\xi}=0$. Here a real hypersurface $M$ is said to be Hopf if the Reeb vector field $\xi$ of $M$ is principal for the shape operator $S$, that is, $S \xi=g(S \xi, \xi) \xi=\alpha \xi$. In particular, if the Reeb curvature function $\alpha=g(S \xi, \xi)$ identically vanishes, we say that $M$ has vanishing geodesic Reeb flow. Otherwise, $M$ has non-vanishing geodesic Reeb flow.

Under these background and motivations, first we prove the following:
Theorem 1.1. There does not exist a Hopf real hypersurface in the complex quadric $Q^{m}$, $m \geq$ 3, with Reeb parallel structure Jacobi operator and $\mathfrak{A}$-principal normal vector field, provided it has non-vanishing geodesic Reeb flow.

Next, let us consider a Hopf real hypersurface with $\mathfrak{A}$-isotropic normal vector field $N$ in $Q^{m}$. Then by virtue of Theorem A we can give a complete classification of Hopf real hypersurfaces in $Q^{m}$ with Reeb parallel structure Jacobi operator as follows:

Theorem 1.2. Let $M$ be a Hopf real hypersurface in the complex quadric $Q^{m}$, $m \geq 3$, with Reeb parallel structure Jacobi operator and non-vanishing geodesic Reeb flow. Then, $M$ has an $\mathfrak{A}$-isotropic normal vector field in $Q^{m}$ if and only if $M$ is locally congruent to a tube around the totally geodesic $\mathbb{C} P^{k}$ in $Q^{2 k}$, where $m=2 k$, and $r \in\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.

By virtue of two Theorems 1.1 and 1.2, we obtained a classification of Hopf real hypersurfaces with singular normal vector field and Reeb parallel structure Jacobi operator in the complex quadric $Q^{m}$ for $m \geq 3$. Motivated by such a geometric condition of Reeb parallel structure Jacobi operator $\nabla_{\xi} R_{\xi}=0$, we want to consider another parallelism related to the structure Jacobi operator $R_{\xi}$. Namely, it is said to be $\mathcal{C}$-parallel structure Jacobi operator. That is, the structure Jacobi operator $R_{\xi}$ of $M$ satisfies

$$
\left(\nabla_{X} R_{\xi}\right) Y=0 \quad \text { for any } X \in \mathcal{C} \text { and } Y \in T M
$$

where $\mathcal{C}$ denotes a distribution defined by $\mathcal{C}=\{X \in T M \mid X \perp \xi\}$. Then in this paper we give a non-existence result for real hypersurfaces in $Q^{m}, m \geq 3$, with $\mathcal{C}$-parallel structure Jacobi operator as follows:

Theorem 1.3. There does not exist a Hopf real hypersurface with $\mathcal{C}$-parallel structure Jacobi operator in the complex quadric $Q^{m}$ for $m \geq 3$.

As a corollary of Theorem 1.3, we want to introduce the following due to Suh [29].
Corollary A. There does not exist a Hopf real hypersurface in $Q^{m}, m \geq 3$, with parallel structure Jacobi operator.

## 2. The complex quadric

For more background to this section we refer to [10], [12], [14], [21], [25], [26], [28], and [30]. The complex quadric $Q^{m}$ is the complex hypersurface in $\mathbb{C} P^{m+1}$ which is defined by the equation $z_{1}^{2}+\cdots+z_{m+2}^{2}=0$, where $z_{1}, \ldots, z_{m+2}$ are homogeneous coordinates on $\mathbb{C} P^{m+1}$. We equip $Q^{m}$ with the Riemannian metric which is induced from the Fubini Study metric on $\mathbb{C} P^{m+1}$ with constant holomorphic sectional curvature 4 . The Kähler structure on $\mathbb{C} P^{m+1}$ induces canonically a Kähler structure $(J, g)$ on the complex quadric. For a nonzero vector $z \in \mathbb{C}^{m+2}$ we denote by $[z]$ the complex span of $z$, that is, $[z]=\mathbb{C} z=$ $\left\{\lambda z \mid \lambda \in S^{1} \subset \mathbb{C}\right\}$. Note that by definition $[z]$ is a point in $\mathbb{C} P^{m+1}$. For each $[z] \in Q^{m} \subset \mathbb{C} P^{m+1}$ we identify $T_{[z]} \mathbb{C} P^{m+1}$ with the orthogonal complement $\mathbb{C}^{m+2} \ominus \mathbb{C} z$ of $\mathbb{C} z$ in $\mathbb{C}^{m+2}$ (see Kobayashi and Nomizu [12]). The tangent space $T_{[z]} Q^{m}$ can then be identified canonically with the orthogonal complement $\mathbb{C}^{m+2} \ominus(\mathbb{C} z \oplus \mathbb{C} \rho)$ of $\mathbb{C} z \oplus \mathbb{C} \rho$ in $\mathbb{C}^{m+2}$, where $\rho \in \nu_{[z]} Q^{m}$ is a normal vector of $Q^{m}$ in $\mathbb{C} P^{m+1}$ at the point $[z]$.

The complex projective space $\mathbb{C} P^{m+1}$ is a Hermitian symmetric space of the special unitary group $S U_{m+2}$, namely $\mathbb{C} P^{m+1}=S U_{m+2} / S\left(U_{m+1} U_{1}\right)$. We denote by $o=[0, \ldots, 0,1] \in \mathbb{C} P^{m+1}$ the fixed point of the action of the stabilizer $S\left(U_{m+1} U_{1}\right)$. The special orthogonal group $S O_{m+2} \subset S U_{m+2}$ acts on $\mathbb{C} P^{m+1}$ with cohomogeneity one. The orbit containing $o$ is a totally geodesic real projective space $\mathbb{R} P^{m+1} \subset \mathbb{C} P^{m+1}$. The second singular orbit of this action is the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$. This homogeneous space model leads to the geometric interpretation of the complex quadric $Q^{m}$ as the

Grassmann manifold $G_{2}^{+}\left(\mathbb{R}^{m+2}\right)$ of oriented 2-planes in $\mathbb{R}^{m+2}$. It also gives a model of $Q^{m}$ as a Hermitian symmetric space of rank 2. The complex quadric $Q^{1}$ is isometric to a sphere $S^{2}$ with constant curvature, and $Q^{2}$ is isometric to the Riemannian product of two 2 -spheres with constant curvature. For this reason we will assume $m \geq 3$ from now on.

For a unit normal vector $\rho$ of $Q^{m}$ at a point $[z] \in Q^{m}$ we denote by $A=A_{\rho}$ the shape operator of $Q^{m}$ in $\mathbb{C} P^{m+1}$ with respect to $\rho$. The shape operator is an involution on the tangent space $T_{[z]} Q^{m}$ and

$$
T_{[z]} Q^{m}=V\left(A_{\rho}\right) \oplus J V\left(A_{\rho}\right),
$$

where $V\left(A_{\rho}\right)$ is the $(+1)$-eigenspace and $J V\left(A_{\rho}\right)$ is the $(-1)$-eigenspace of $A_{\rho}$. Geometrically this means that the shape operator $A_{\rho}$ defines a real structure on the complex vector space $T_{[z]} Q^{m}$, or equivalently, is a complex conjugation on $T_{[z]} Q^{m}$. Since the real codimension of $Q^{m}$ in $\mathbb{C} P^{m+1}$ is 2 , this induces an $S^{1}$-subbundle $\mathfrak{A}$ of the endomorphism bundle $\operatorname{End}\left(T Q^{m}\right)$ consisting of complex conjugations. There is a geometric interpretation of these conjugations. The complex quadric $Q^{m}$ can be viewed as the complexification of the $m$-dimensional sphere $S^{m}$. Through each point $[z] \in Q^{m}$ there exists a one-parameter family of real forms of $Q^{m}$ which are isometric to the sphere $S^{m}$. These real forms are congruent to each other under action of the center $S O_{2}$ of the isotropy subgroup of $S O_{m+2}$ at [z]. The isometric reflection of $Q^{m}$ in such a real form $S^{m}$ is an isometry, and the differential at $[z]$ of such a reflection is a conjugation on $T_{[z]} Q^{m}$. In this way the family $\mathfrak{A}$ of conjugations on $T_{[z]} Q^{m}$ corresponds to the family of real forms $S^{m}$ of $Q^{m}$ containing $[z]$, and the subspaces $V(A)$ in $T_{[z]} Q^{m}$ correspond to the tangent spaces $T_{[z]} S^{m}$ of the real forms $S^{m}$ of $Q^{m}$.

The Gauss equation for $Q^{m} \subset \mathbb{C} P^{m+1}$ implies that the Riemannian curvature tensor $\bar{R}$ of $Q^{m}$ can be described in terms of the complex structure $J$ and the complex conjugations $A \in \mathfrak{A}$ :

$$
\begin{align*}
\bar{R}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X-g(J X, Z) J Y \\
& -2 g(J X, Y) J Z+g(A Y, Z) A X  \tag{2.1}\\
& -g(A X, Z) A Y+g(J A Y, Z) J A X-g(J A X, Z) J A Y .
\end{align*}
$$

It is well known that for every unit tangent vector $U \in T_{[z]} Q^{m}$ there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $Z_{1}, Z_{2} \in V(A)$ such that

$$
U=\cos (t) Z_{1}+\sin (t) J Z_{2}
$$

for some $t \in[0, \pi / 4]$ (see [21]). The singular tangent vectors correspond to the values $t=0$ and $t=\pi / 4$. If $0<t<\pi / 4$, then the unique maximal flat containing $U$ is $\mathbb{R} Z_{1} \oplus \mathbb{R} J Z_{2}$.

## 3. Real hypersurfaces in $Q^{m}$

Let $M$ be a real hypersurface in $Q^{m}$ and denote by $(\phi, \xi, \eta, g)$ the induced almost contact metric structure. By using the Gauss and Weingarten formulas
the left-hand side of (2.1) becomes

$$
\begin{aligned}
\bar{R}(X, Y) Z= & R(X, Y) Z-g(S Y, Z) S X+g(S X, Z) S Y \\
& +\left\{g\left(\left(\nabla_{X} S\right) Y, Z\right)-g\left(\left(\nabla_{Y} S\right) X, Z\right)\right\} N
\end{aligned}
$$

where $R$ and $S$ denote the Riemannian curvature tensor and the shape operator of $M$ in $Q^{m}$, respectively. Taking tangent and normal components of (2.1) respectively, we obtain

$$
\begin{aligned}
g(R(X, Y) Z, W)= & g(Y, Z) g(X, W)-g(X, Z) g(Y, W)+g(J Y, Z) g(J X, W) \\
& -g(J X, Z) g(J Y, W)-2 g(J X, Y) g(J Z, W) \\
& +g(A Y, Z) g(A X, W)-g(A X, Z) g(A Y, W) \\
& +g(J A Y, Z) g(J A X, W)-g(J A X, Z) g(J A Y, W) \\
& +g(S Y, Z) g(S X, W)-g(S X, Z) g(S Y, W)
\end{aligned}
$$

and

$$
\begin{align*}
& g\left(\left(\nabla_{X} S\right) Y, Z\right)-g\left(\left(\nabla_{Y} S\right) X, Z\right) \\
= & \eta(X) g(J Y, Z)-\eta(Y) g(J X, Z)-2 \eta(Z) g(J X, Y) \\
& +g(A Y, Z) g(A X, N)-g(A X, Z) g(A Y, N)  \tag{3.2}\\
& +\eta(A X) g(J A Y, Z)-\eta(A Y) g(J A X, Z),
\end{align*}
$$

where $X, Y, Z$ and $W$ are tangent vector fields to $M$.
Note that $J X=\phi X+\eta(X) N$ and $J N=-\xi$, where $\phi X$ is the tangential component of $J X$ and $N$ is a (local) unit normal vector field of $M$. The tangent bundle $T M$ of $M$ splits orthogonally into $T M=\mathcal{C} \oplus \mathbb{R} \xi$, where $\mathcal{C}=\operatorname{ker} \eta$ is the maximal complex subbundle of $T M$. The structure tensor field $\phi$ restricted to $\mathcal{C}$ coincides with the complex structure $J$ restricted to $\mathcal{C}$, and $\phi \xi=0$. Moreover, since the complex quadric $Q^{m}$ has also a real structure $A$, we decompose $A X$ into its tangential and normal components for a fixed $A \in \mathfrak{A}_{[z]}$ and $X \in T_{[z]} M$ :

$$
\begin{equation*}
A X=B X+\rho(X) N \tag{3.3}
\end{equation*}
$$

where $B X$ denotes the tangential component of $A X$ and

$$
\rho(X)=g(A X, N)=g(X, A N)=g(X, A J \xi)=g(J X, A \xi)
$$

From these notations, the equations (3.1) and (3.2) can be written as

$$
\begin{aligned}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \\
& -2 g(\phi X, Y) \phi Z+g(B Y, Z) B X-g(B X, Z) B Y \\
& +g(\phi B Y, Z) \phi B X+g(\phi A \xi, Y) \eta(Z) \phi B X \\
& -g(\phi B Y, Z) \rho(X) \xi-g(\phi A \xi, Y) \eta(Z) \rho(X) \xi \\
& -g(\phi B X, Z) \phi B Y-g(\phi A \xi, X) \eta(Z) \phi B Y \\
& +g(\phi B X, Z) \rho(Y) \xi+g(\phi A \xi, X) \eta(Z) \rho(Y) \xi \\
& +g(S Y, Z) S X-g(S X, Z) S Y
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X \\
= & \eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi+g(A X, N) B Y-g(A Y, N) B X \\
& +g(A \xi, X) \phi B Y-g(A \xi, X) \rho(Y) \xi-g(A \xi, Y) \phi B X+g(A \xi, Y) \rho(X) \xi,
\end{aligned}
$$

which are called the equations of Gauss and Codazzi, respectively. Moreover, from (3.1) the Ricci tensor $\mathfrak{R i c}$ of $M$ is given by

$$
\begin{align*}
\mathfrak{R i c} X= & (2 m-1) X-3 \eta(X) \xi+g(A \xi, \xi) B X-g(A X, N) \phi A \xi \\
& +g(A X, \xi) A \xi+h S X-S^{2} X, \tag{3.4}
\end{align*}
$$

where $h=\operatorname{Tr} S$ denotes the trace of the shape operator $S$ of $M$ in $Q^{m}$.
As mentioned in Section 2, since the normal vector field $N$ belongs to $T_{[z]} Q^{m}$, $[z] \in M$, we can choose $A \in \mathfrak{A}_{[z]}$ such that

$$
N=\cos (t) Z_{1}+\sin (t) J Z_{2}
$$

for some orthonormal vectors $Z_{1}, Z_{2} \in V(A)$ and $0 \leq t \leq \frac{\pi}{4}$ (see Proposition 3 in [21]). Note that $t$ is a function on $M$. If $t=0$, then $N=Z_{1} \in V(A)$, therefore we see that $N$ becomes an $\mathfrak{A}$-principal tangent vector field. On the other hand, if $t=\frac{\pi}{4}$, then $N=\frac{1}{\sqrt{2}}\left(Z_{1}+J Z_{2}\right)$. That is, $N$ is an $\mathfrak{A}$-isotropic tangent vector field of $Q^{m}$. In addition, since $\xi=-J N$, we have

$$
\left\{\begin{array}{l}
\xi=\sin (t) Z_{2}-\cos (t) J Z_{1}  \tag{3.5}\\
A N=\cos (t) Z_{1}-\sin (t) J Z_{2} \\
A \xi=\sin (t) Z_{2}+\cos (t) J Z_{1}
\end{array}\right.
$$

This implies $g(\xi, A N)=0$ and $g(A \xi, \xi)=-g(A N, N)=-\cos (2 t)$ on $M$. At each point $[z] \in M$ we define a maximal $\mathfrak{A}$-invariant subspace of $T_{[z]} M,[z] \in M$ as follows:

$$
\mathcal{Q}_{[z]}=\left\{X \in T_{[z]} M \mid A X \in T_{[z]} M \text { for all } A \in \mathfrak{A}_{[z]}\right\}
$$

It is known that if $N_{[z]}$ is $\mathfrak{A}$-principal, then $\mathcal{Q}_{[z]}=\mathcal{C}_{[z]}$ (see [25]).
We now assume that $M$ is a Hopf hypersurface in the complex quadric $Q^{m}$. Then the shape operator $S$ of $M$ in $Q^{m}$ satisfies $S \xi=\alpha \xi$ with the Reeb function $\alpha=g(S \xi, \xi)$ on $M$. By virtue of the Codazzi equation, we obtain the following lemma.

Lemma A ([29]). Let $M$ be a Hopf hypersurface in $Q^{m}$ for $m \geq 3$. Then we obtain

$$
\begin{equation*}
X \alpha=(\xi \alpha) \eta(X)+2 g(A \xi, \xi) g(X, A N) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{align*}
& 2 S \phi S X-\alpha \phi S X-\alpha S \phi X-2 \phi X-2 g(X, \phi A \xi) A \xi \\
& +2 g(X, A \xi) \phi A \xi+2 g(X, \phi A \xi) g(\xi, A \xi) \xi-2 g(\xi, A \xi) \eta(X) \phi A \xi=0 \tag{3.7}
\end{align*}
$$

for any tangent vector fields $X$ and $Y$ on $M$.

Remark 3.1. From (3.6) we know that if $M$ has vanishing geodesic Reeb flow (or constant Reeb curvature), then the normal vector $N$ is singular. In fact, under this assumption (3.6) becomes $g(A \xi, \xi) g(X, A N)=0$ for any tangent vector field $X$ on $M$. Since $g(A \xi, \xi)=-\cos (2 t)$, the case of $g(A \xi, \xi)=0$ implies that $N$ is $\mathfrak{A}$-isotropic. Besides, if $g(A \xi, \xi) \neq 0$, that is, $g(A N, X)=0$ for all $X \in T M$, then

$$
A N=\sum_{i=1}^{2 m} g\left(A N, e_{i}\right) e_{i}+g(A N, N) N=g(A N, N) N
$$

for any basis $\left\{e_{1}, e_{2}, \ldots, e_{2 m-1}, e_{2 m}:=N\right\}$ of $T_{[z]} Q^{m},[z] \in Q^{m}$. Applying the real structure $A$ to the above formula and using the property $A^{2}=I$, we get $N=A^{2} N=g(A N, N) A N$. Taking the inner product of the above equation with the unit normal $N$, it follows that $g(A N, N)= \pm 1$. Since $g(A N, N)=$ $\cos (2 t)$ where $t \in\left[0, \frac{\pi}{4}\right)$, we obtain $A N=N$. Hence $N$ should be $\mathfrak{A}$-principal.

Lemma B ([25]). Let $M$ be a Hopf hypersurface in $Q^{m}$ such that the normal vector field $N$ is $\mathfrak{A}$-principal everywhere. Then $\alpha$ is constant. Moreover, if $X \in \mathcal{C}$ is a principal curvature vector of $M$ with principal curvature $\lambda$, then $2 \lambda \neq \alpha$ and its corresponding vector $\phi X$ is a principal curvature vector of $M$ with principal curvature $\frac{\alpha \lambda+2}{2 \lambda-\alpha}$.

Lemma C ([25]). Let $M$ be a Hopf hypersurface in $Q^{m}, m \geq 3$, such that the normal vector field $N$ is $\mathfrak{A}$-isotropic everywhere. Then $\alpha$ is constant.

If the normal vector $N$ is $\mathfrak{A}$-isotropic, then we obtain

$$
g(A \xi, N)=g(A \xi, \xi)=g(A N, N)=0
$$

from (3.5). Taking the covariant derivative of $g(A N, N)=0$ along the direction of any $X \in T_{[z]} M,[z] \in M$, we obtain

$$
\begin{aligned}
0=X(g(A N, N)) & =g\left(\bar{\nabla}_{X}(A N), N\right)+g\left(A N, \bar{\nabla}_{X} N\right) \\
& =g\left(\left(\bar{\nabla}_{X} A\right) N+A\left(\bar{\nabla}_{X} N\right), N\right)+g\left(A N, \bar{\nabla}_{X} N\right) \\
& =g(q(X) J A N-A S X, N)-g(A N, S X) \\
& =-2 g(A S X, N)
\end{aligned}
$$

where we have used the covariant derivative of the complex structure $A$, that is, $\left(\bar{\nabla}_{X} A\right) Y=q(X) J A Y$ and the formula of Weingarten. Then the above formula gives $S A N=0$, because $A N$ becomes a tangent vector field on $M$ for an $\mathfrak{A}$-isotropic unit normal vector field $N$.

On the other hand, by differentiating $g(A \xi, N)=0$ and using the formula of Gauss, we have:

$$
\begin{aligned}
0 & =g\left(\bar{\nabla}_{X}(A \xi), N\right)+g\left(A \xi, \bar{\nabla}_{X} N\right) \\
& =g\left(\left(\bar{\nabla}_{X} A\right) \xi+A\left(\bar{\nabla}_{X} \xi\right), N\right)+g\left(A \xi, \bar{\nabla}_{X} N\right) \\
& =g\left(\left(\bar{\nabla}_{X} A\right) \xi, N\right)+g\left(\nabla_{X} \xi+\sigma(X, \xi), A N\right)+g\left(A \xi, \bar{\nabla}_{X} N\right)
\end{aligned}
$$

$$
\begin{aligned}
& =g(q(X) J A \xi, N)+g(\phi S X+g(S X, \xi) N, A N)-g(A \xi, S X) \\
& =-2 g(A \xi, S X)
\end{aligned}
$$

where $\sigma$ is the second fundamental form of $M$ and $\phi A N=J A N=-A J N=$ $A \xi$. Since $g(A \xi, N)=0$, the vector field $A \xi$ becomes a tangent vector field on $M$ when the unit normal vector field $N$ is $\mathfrak{A}$-isotropic. Then the above formula gives $S A \xi=0$.

Moreover, if the normal vector $N$ is $\mathfrak{A}$-isotropic, then the tangent vector space $T_{[z]} M,[z] \in M$, is decomposed as

$$
T_{[z]} M=[\xi] \oplus \operatorname{Span}[A \xi, A N] \oplus \mathcal{Q}
$$

where $\mathcal{C} \ominus \mathcal{Q}=\mathcal{Q}^{\perp}=\operatorname{Span}[A \xi, A N]$. From the equation (3.7), we obtain:

$$
(2 \lambda-\alpha) S \phi X=(\alpha \lambda+2) \phi X
$$

for some principal curvature vector $X \in \mathcal{Q} \subset T_{[z]} M$ such that $S X=\lambda X$. If $2 \lambda-\alpha=0$ (i.e., $\lambda=\frac{\alpha}{2}$ ), then $\alpha \lambda+2=\frac{\alpha^{2}+4}{2}=0$, which makes a contradiction. Hence we obtain:

Lemma 3.2. Let $M$ be a Hopf hypersurface in $Q^{m}$ such that the normal vector field $N$ is $\mathfrak{A}$-isotropic. Then $S A \xi=0$ and $S A N=0$. Moreover, if $X \in \mathcal{Q}$ is a principal curvature vector of $M$ with principal curvature $\lambda$, then $2 \lambda \neq \alpha$ and its corresponding vector $\phi X$ is a principal curvature vector of $M$ with principal curvature $\frac{\alpha \lambda+2}{2 \lambda-\alpha}$.

On the other hand, from the property of $g(A \xi, N)=0$ on a real hypersurface $M$ in $Q^{m}$ we see that the non-zero vector field $A \xi$ is tangent to $M$. Hence by Gauss formula it yields

$$
\begin{aligned}
\nabla_{X}(A \xi) & =\bar{\nabla}_{X}(A \xi)-\sigma(X, A \xi) \\
& =q(X) J A \xi+A\left(\nabla_{X} \xi\right)+g(S X, \xi) A N-g(S X, A \xi) N
\end{aligned}
$$

for any $X \in T M$. By using $A N=A J \xi=-J A \xi$ and $J A \xi=\phi A \xi+\eta(A \xi) N$, the tangential part and normal part of this formula give us, respectively,

$$
\begin{equation*}
\nabla_{X}(A \xi)=q(X) \phi A \xi+B \phi S X-g(S X, \xi) \phi A \xi \tag{3.8}
\end{equation*}
$$

and

$$
\begin{align*}
q(X) g(A \xi, \xi) & =-g\left(A N, \nabla_{X} \xi\right)+g(S X, \xi) g(A \xi, \xi)+g(S X, A \xi) \\
& =2 g(S X, A \xi) \tag{3.9}
\end{align*}
$$

In particular, if $M$ is Hopf, then (3.9) becomes

$$
\begin{equation*}
q(\xi) g(A \xi, \xi)=2 \alpha g(A \xi, \xi) \tag{3.10}
\end{equation*}
$$

Now, the fact that a real hypersurface $M$ has $\mathfrak{A}$-principal normal vector field $N$ in $Q^{m}$ implies $A \xi=-\xi$ and $A N=N$. Therefore, we obtain:
Lemma 3.3. Let $M$ be a real hypersurface with $\mathfrak{A}$-principal normal vector field $N$ in the complex quadric $Q^{m}$ for $m \geq 3$. Then we obtain:
(a) $A X=B X$,
(b) $A \phi X=-\phi A X$,
(c) $A \phi S X=-\phi S X$ and $q(X)=2 g(S X, \xi)$,
(d) $A S X=S X-2 g(S X, \xi) \xi$ and $S A X=S X-2 \eta(X) S \xi$
for all $X \in T_{[z]} M,[z] \in M$.
Proof. Since the normal vector field $N$ is $\mathfrak{A}$-principal, we see that $A N=N$. By virtue of the symmetric property of the real structure $A$, it yields that for any $X \in T M$

$$
g(A X, N)=g(X, A N)=g(X, N)=0
$$

From this and (3.3), we can assert that $A X=B X$ for any tangent vector field $X$ of $M$. In addition, on the complex quadric $Q^{m}$ the complex structure $J$ anti-commutes with the real structure $A$. From this property and the formula $J X=\phi X+\eta(X) N$, we obtain (b).

By using the assumption of $\mathfrak{A}$-principal normal $N$, (3.9) gives us $q(X)=$ $2 g(S X, \xi)$. In addition, from (a) in Lemma 3.3 and $A \xi=-\xi$, (3.8) can be arranged as

$$
\nabla_{X}(A \xi)=B \phi S X=A \phi S X
$$

Therefore, differentiating the equation $A \xi=-\xi$ with respect to the Levi-Civita connection $\nabla$ of $M$, we get

$$
-\phi S X=A \phi S X
$$

Finally, taking the covariant derivatives of $A N=N$ with respect to the Levi-Civita connection $\bar{\nabla}$ of $Q^{m}$ and using the formulas $\left(\bar{\nabla}_{U} A\right) V=q(U) J A V$ for any $U, V \in T Q^{m}$, it follows

$$
\begin{aligned}
-q(X) \xi-A S X & =q(X) J A N-A S X \\
& =\left(\bar{\nabla}_{X} A\right) N+A\left(\bar{\nabla}_{X} N\right) \\
& =\bar{\nabla}_{X} N=-S X
\end{aligned}
$$

where we have used the Weingarten formula, $\bar{\nabla}_{X} N=-S X$ and $J N=-\xi$. By virtue of (c) in Lemma 3.3, that is, $q(X)=2 g(S X, \xi)$, we consequently obtain $A S X=S X-2 g(S X, \xi) \xi$. Since the shape operator $S$ of $M$ and the real structure $A$ are both symmetric, we also obtain $S A X=S X-2 \eta(X) S \xi$.

Remark 3.4. If $M$ is Hopf in $Q^{m}$, the statements (c) and (d) in Lemma 3.3 can be rewritten as follows.
(c') $A \phi S X=-\phi S X$ and $q(X)=0$,
(d') $A S X=S X=S A X$
for any $X \in \mathcal{C}=\{X \in T M \mid X \perp \xi\}$.
From now on, let us consider the Hessian tensor of the Reeb curvature function $\alpha=g(S \xi, \xi)$ which is defined by

$$
(\operatorname{Hess} \alpha)(X, Y)=g\left(\nabla_{X} \operatorname{grad} \alpha, Y\right)
$$

for any $X$ and $Y$ tangent to $M$. Then, it satisfies

$$
(\operatorname{Hess} \alpha)(X, Y)=(\operatorname{Hess} \alpha)(Y, X)
$$

that is, $g\left(\nabla_{X} \operatorname{grad} \alpha, Y\right)=g\left(\nabla_{Y} \operatorname{grad} \alpha, X\right)$. From this property we obtain the following lemma which plays a key role in the proof of our Theorem 1.3.

Lemma 3.5. Let $M$ be a Hopf real hypersurface in the complex quadric $Q^{m}$, $m \geq 3$. Then we obtain:

$$
\begin{align*}
- & 2 \beta g(S A \xi, X) \eta(Y)+2 \alpha \beta g(A \xi, X) \eta(Y)+(\xi \alpha) g(\phi S X, Y) \\
& +4 g(S \phi A \xi, X) g(\phi A \xi, Y)+4 g(S A \xi, X) g(A \xi, Y)-2 \beta g(B S X, Y) \\
= & -2 \beta g(S A \xi, Y) \eta(X)+2 \alpha \beta g(A \xi, Y) \eta(X)+(\xi \alpha) g(\phi S Y, X)  \tag{3.11}\\
& +4 g(S \phi A \xi, Y) g(\phi A \xi, X)+4 g(S A \xi, Y) g(A \xi, X)-2 \beta g(B S Y, X),
\end{align*}
$$

where $\beta=g(A \xi, \xi)$ and $X, Y \in T M$.
Proof. From (3.6) the gradient of the Reeb curvature function $\alpha$ is given by

$$
\operatorname{grad} \alpha=(\xi \alpha) \xi-2 \beta \phi A \xi
$$

together with $A N=-\phi A \xi-g(A \xi, \xi) N$ and $\beta=g(A \xi, \xi)$. Taking the covariant derivative of grad $\alpha$ and using the formula $\nabla_{X} \xi=\phi S X$, it follows
$\nabla_{X} \operatorname{grad} \alpha=X(\xi \alpha) \xi+(\xi \alpha) \nabla_{X} \xi-2(X \beta) \phi A \xi-2 \beta\left(\nabla_{X} \phi\right) A \xi-2 \beta \phi\left(\nabla_{X} A \xi\right)$

$$
\begin{equation*}
=X(\xi \alpha) \xi+(\xi \alpha) \phi S X-2(X \beta) \phi A \xi-2 \beta\left(\nabla_{X} \phi\right) A \xi-2 \beta \phi\left(\nabla_{X} A \xi\right) \tag{3.12}
\end{equation*}
$$

for any tangent vector field $X$ to $M$. By using $\left(\nabla_{X} \phi\right) Y=\eta(Y) S X-g(S X, Y) \xi$ and $A \xi \in T_{[z]} M$ for any $[z] \in M$, we get

$$
\begin{equation*}
-2 \beta\left(\nabla_{X} \phi\right) A \xi=-2 \beta^{2} S X+2 \beta g(S A \xi, X) \xi \tag{3.13}
\end{equation*}
$$

In addition, by using (3.8) and the property of $\phi^{2} X=-X+\eta(X) \xi$, we obtain:

$$
\begin{align*}
\phi\left(\nabla_{X} A \xi\right) & =q(X) \phi^{2} A \xi+\phi B \phi S X-g(S X, \xi) \phi^{2} A \xi \\
& =-q(X) A \xi+\beta q(X) \xi+\phi B \phi S X+\alpha \eta(X) A \xi-\alpha \beta \eta(X) \xi \tag{3.14}
\end{align*}
$$

On the other hand, from the anti-commuting property of $J A=-A J$ we get

$$
\begin{equation*}
\phi B X+g(X, \phi A \xi) \xi=-B \phi X+\eta(X) \phi A \xi \tag{3.15}
\end{equation*}
$$

for any $X \in T_{[z]} M,[z] \in M$. By virtue of this formula, we have

$$
\begin{aligned}
\phi B \phi S X & =-B \phi^{2} S X+\eta(\phi S X) \phi A \xi-g(\phi S X, \phi A \xi) \xi \\
& =B S X-\alpha \eta(X) B \xi-g(S A \xi, X) \xi+\alpha \beta \eta(X) \xi
\end{aligned}
$$

From this and (3.9), the equation (3.14) yields
$-2 \beta \phi\left(\nabla_{X} A \xi\right)=2 \beta q(X) A \xi-2 \beta^{2} q(X) \xi-2 \beta \phi B \phi S X$

$$
-2 \alpha \beta \eta(X) A \xi+2 \alpha \beta^{2} \eta(X) \xi
$$

$$
\begin{align*}
& =2 \beta q(X) A \xi-2 \beta^{2} q(X) \xi-2 \beta B S X+2 \beta g(S A \xi, X) \xi  \tag{3.16}\\
& =4 g(S A \xi, X) A \xi-4 \beta g(S A \xi, X) \xi-2 \beta B S X+2 \beta g(S A \xi, X) \xi
\end{align*}
$$

$$
=4 g(S A \xi, X) A \xi-2 \beta g(S A \xi, X) \xi-2 \beta B S X
$$

Substituting (3.13) and (3.15) into (3.12), we get

$$
\begin{aligned}
\nabla_{X} \operatorname{grad} \alpha= & X(\xi \alpha) \xi+(\xi \alpha) \phi S X-2(X \beta) \phi A \xi \\
& -2 \beta^{2} S X+4 g(S A \xi, X) A \xi-2 \beta B S X
\end{aligned}
$$

for any $X \in T_{[z]} M,[z] \in M$. Thus, the property of $g\left(\nabla_{X} \operatorname{grad} \alpha, Y\right)=$ $g\left(\nabla_{Y} \operatorname{grad} \alpha, X\right)$ gives us

$$
\begin{align*}
& X(\xi \alpha) \eta(Y)+(\xi \alpha) g(\phi S X, Y)-2(X \beta) g(\phi A \xi, Y) \\
& +4 g(S A \xi, X) g(A \xi, Y)-2 \beta g(B S X, Y) \\
= & Y(\xi \alpha) \eta(X)+(\xi \alpha) g(\phi S Y, X)-2(Y \beta) g(\phi A \xi, X)  \tag{3.17}\\
& +4 g(S A \xi, Y) g(A \xi, X)-2 \beta g(B S Y, X)
\end{align*}
$$

for any tangent vector fields $X$ and $Y$.
Now, since $M$ is Hopf, the equation (3.8) leads to

$$
\begin{align*}
Y \beta & =\nabla_{Y}(g(A \xi, \xi)) \\
& =g\left(\nabla_{Y} A \xi, \xi\right)+g\left(A \xi, \nabla_{Y} \xi\right) \\
& =q(Y) g(\phi A \xi, \xi)+g(B \phi S Y, \xi)-\alpha \eta(Y) g(\phi A \xi, \xi)+g(A \xi, \phi S Y)  \tag{3.18}\\
& =-2 g(S \phi A \xi, Y)
\end{align*}
$$

Furthermore $\xi \beta=0$. From this and putting $Y=\xi$ in (3.17), it follows

$$
\begin{align*}
X(\xi \alpha) & =-2 \beta g(S A \xi, X)+\xi(\xi \alpha) \eta(X)-2(\xi \beta) g(\phi A \xi, X)+2 \alpha \beta g(A \xi, X) \\
& =-2 \beta g(S A \xi, X)+\xi(\xi \alpha) \eta(X)+2 \alpha \beta g(A \xi, X) \tag{3.19}
\end{align*}
$$

Summing up (3.18) and (3.19) and bearing in mind (3.17), we get a complete proof of our lemma.

## 4. Proof of Theorem 1.1

## - Reeb parallel structure Jacobi operator with $\mathfrak{A}$-principal normal vector field -

Let $M$ be a Hopf real hypersurface in the complex quadric $Q^{m}, m \geq 3$, with Reeb parallel structure Jacobi operator, that is,
(*)

$$
\left(\nabla_{\xi} R_{\xi}\right) Y=0
$$

for any tangent vector field $Y$ on $M$.
As mentioned in Section 1, the structure Jacobi operator $R_{\xi} \in \operatorname{End}(T M)$ is induced from the curvature tensor $R$ of $M$ in $Q^{m}$ as follows: For any tangent vector fields $Y, Z \in T M$

$$
\begin{align*}
g\left(R_{\xi} Y, Z\right)= & g(R(Y, \xi) \xi, Z) \\
= & g(Y, Z)-\eta(Y) \eta(Z)+g(A \xi, \xi) g(A Y, Z) \\
& -g(Y, A \xi) g(A \xi, Z)-g(A Y, N) g(A N, Z)  \tag{4.1}\\
& +\alpha g(S Y, Z)-\alpha^{2} \eta(Y) \eta(Z),
\end{align*}
$$

where we have used $J \xi=N, J A=-A J$, and $g(A \xi, N)=0$.
Remark 4.1. For any tangent vector field $X$ on $M$ the vector field $A X$ belongs to $T Q^{m}$, that is, $A X=B X+\rho(X) N \in T M \oplus(T M)^{\perp}=T Q^{m}$. Therefore, from (4.1) the structure Jacobi operator $R_{\xi}$ is given by

$$
\begin{align*}
R_{\xi} Y= & Y-\eta(Y) \xi+g(A \xi, \xi) B Y-g(A \xi, Y) A \xi \\
& -g(\phi A \xi, Y) \phi A \xi+\alpha S Y-\alpha^{2} \eta(Y) \xi \tag{4.2}
\end{align*}
$$

Here we have used that $A \xi=B \xi \in T M$ (i.e., $\rho(\xi)=g(A N, \xi)=0$ ) and $A N=A J \xi=-J A \xi=-\phi A \xi-g(A \xi, \xi) N$.

Taking the covariant derivative of (4.2) along the direction of $X \in T M$ we have

$$
\begin{aligned}
& \left(\nabla_{X} R_{\xi}\right) Y \\
= & -g\left(Y, \nabla_{X} \xi\right) \xi-\eta(Y) \nabla_{X} \xi+g\left(\nabla_{X}(A \xi), \xi\right) B Y+g\left(A \xi, \nabla_{X} \xi\right) B Y \\
& +g(A \xi, \xi)\left(\nabla_{X} B\right) Y-g\left(\nabla_{X}(A \xi), Y\right) A \xi-g(A \xi, Y) \nabla_{X}(A \xi) \\
& -g\left(\left(\nabla_{X} \phi\right) A \xi, Y\right) \phi A \xi+g\left(\nabla_{X}(A \xi), \phi Y\right) \phi A \xi \\
& -g(\phi A \xi, Y)\left(\nabla_{X} \phi\right) A \xi-g(\phi A \xi, Y) \phi\left(\nabla_{X}(A \xi)\right) \\
& +(X \alpha) S Y+\alpha\left(\nabla_{X} S\right) Y-2 \alpha(X \alpha) \eta(Y) \xi \\
& -\alpha^{2} g\left(Y, \nabla_{X} \xi\right) \xi-\alpha^{2} \eta(Y) \nabla_{X} \xi \\
= & -g(Y, \phi S X) \xi-\eta(Y) \phi S X+g(B \phi S X, \xi) B Y+g(A \xi, \phi S X) B Y \\
& +g(A \xi, \xi)\{q(X) \phi B Y-q(X) g(A N, Y) \xi-g(S X, Y) \phi A \xi+g(A N, Y) S X\} \\
& -\{(q(X)-\alpha \eta(X)) g(\phi A \xi, Y)+g(B \phi S X, Y)\} A \xi \\
& -g(A \xi, Y)\{(q(X)-\alpha \eta(X)) \phi A \xi+B \phi S X\} \\
& -\{g(A \xi, \xi) g(S X, Y)-g(S X, A \xi) \eta(Y)\} \phi A \xi \\
& +(q(X)-\alpha \eta(X)) g(A \xi, Y) \phi A \xi \\
& -\{(q(X)-\alpha \eta(X)) g(A \xi, \xi) \eta(Y)-g(B \phi S X, \phi Y)\} \phi A \xi \\
& -g(\phi A \xi, Y)\{g(A \xi, \xi) S X-g(S X, A \xi) \xi\} \\
& +g(\phi A \xi, Y)\{(q(X)-\alpha \eta(X)) A \xi-g(A \xi, \xi)(q(X)-\alpha \eta(X)) \xi-\phi B \phi S X\} \\
& +(X \alpha) S Y+\alpha\left(\nabla_{X} S\right) Y-2 \alpha(X \alpha) \eta(Y) \xi-\alpha^{2} g(Y, \phi S X) \xi-\alpha^{2} \eta(Y) \phi S X,
\end{aligned}
$$

where we have used (3.8) and

$$
\begin{aligned}
\left(\nabla_{X} B\right) Y & =\nabla_{X}(B Y)-B\left(\nabla_{X} Y\right) \\
& =\bar{\nabla}_{X}(B Y)-\sigma(X, B Y)-B\left(\nabla_{X} Y\right) \\
& =\bar{\nabla}_{X}(A Y-g(A Y, N) N)-g(S X, B Y) N-B\left(\nabla_{X} Y\right) \\
& =\left(\bar{\nabla}_{X} A\right) Y+A\left(\bar{\nabla}_{X} Y\right)-g\left(\bar{\nabla}_{X}(A Y), N\right) N-g\left(A Y, \bar{\nabla}_{X} N\right) N
\end{aligned}
$$

$$
\begin{aligned}
& -g(A Y, N) \bar{\nabla}_{X} N-g(S X, B Y) N-B\left(\nabla_{X} Y\right) \\
= & q(X) J A Y+A\left(\nabla_{X} Y\right)+g(S X, Y) A N-q(X) g(J A Y, N) N \\
& -g\left(\nabla_{X} Y, A N\right) N-g(S X, Y) g(A N, N) N \\
& +g(A Y, S X) N+g(A Y, N) S X-g(S X, B Y) N-B\left(\nabla_{X} Y\right) \\
= & q(X) J A Y+g(S X, Y) A N-q(X) g(A Y, \xi) N \\
& +g(S X, Y) g(A \xi, \xi) N+g(A Y, N) S X \\
= & q(X)\{\phi B Y-g(A Y, N) \xi\}-g(S X, Y) \phi A \xi+g(A Y, N) S X .
\end{aligned}
$$

Since $M$ is a Hopf real hypersurface in $Q^{m}$ with Reeb parallel structure Jacobi operator, it yields

$$
\begin{align*}
& g(A \xi, \xi)\{q(\xi) \phi B Y-q(\xi) g(A N, Y) \xi-\alpha \eta(Y) \phi A \xi+\alpha g(A N, Y) \xi\} \\
& -(q(\xi)-\alpha) g(A \xi, \xi) \eta(Y) \phi A \xi-g(\phi A \xi, Y) g(\xi, A \xi)(q(\xi)-\alpha) \xi  \tag{4.4}\\
& +(\xi \alpha) S Y+\alpha\left(\nabla_{\xi} S\right) Y-2 \alpha(\xi \alpha) \eta(Y) \xi=0
\end{align*}
$$

From now on, we assume that $M$ is a real hypersurface with non-vanishing geodesic Reeb flow and Reeb parallel structure Jacobi operator in the complex quadric $Q^{m}, m \geq 3$. In addition, we suppose that the unit normal vector field $N$ of $M$ is $\mathfrak{A}$-principal. Then from (3.5) it follows that

$$
A N=N \text { and } A \xi=-\xi
$$

So it implies that $A Y \in T M$ for all $Y \in T M$, that is, $g(A Y, N)=g(Y, A N)=0$. Moreover, taking the derivative of $A N=N$ with respect to the Levi-Civita connection $\bar{\nabla}$ of $Q^{m}$ and using (3.8), we get

$$
\begin{equation*}
A S Y=S Y-2 \alpha(Y) \xi \tag{4.5}
\end{equation*}
$$

together with $\left(\bar{\nabla}_{Y} A\right) X=q(Y) J A X$ and $\bar{\nabla}_{Y} N=-S Y$.
From these properties, (4.4) can be rearranged as follows:

$$
\begin{align*}
0 & =\left(\nabla_{\xi} R_{\xi}\right) Y \\
& =-q(\xi) J A Y-q(\xi) \eta(Y) N+(\xi \alpha) S Y+\alpha\left(\nabla_{\xi} S\right) Y-2 \alpha(\xi \alpha) \eta(Y) \xi \tag{4.6}
\end{align*}
$$

In addition, from (3.10) we know $q(\xi)=2 \alpha$. By Lemma B in Section 3 and our assumption that $M$ has non-vanishing geodesic Reeb flow, the Reeb curvature function $\alpha$ is a non-zero constant on $M$. So (4.6) reduces to the following

$$
\begin{equation*}
\left(\nabla_{\xi} S\right) Y=2 \phi A Y \tag{4.7}
\end{equation*}
$$

together with $J A Y=\phi A Y+\eta(A Y) N=\phi A Y-\eta(Y) N$.
On the other hand, by using the equation of Codazzi (3.2), we have

$$
\begin{aligned}
g\left(\left(\nabla_{\xi} S\right) Y-\left(\nabla_{Y} S\right) \xi, Z\right)= & g(\phi Y, Z)-g(A Y, N) g(A \xi, Z) \\
& +g(\xi, A \xi) g(J A Y, Z)+g(\xi, A Y) g(A N, Z) \\
= & g(\phi Y, Z)-g(\phi A Y, Z)
\end{aligned}
$$

Since $M$ is a Hopf real hypersurface in $Q^{m}$ with $\mathfrak{A}$-principal normal vector field $N$, Lemma B in Section 3 gives

$$
\left(\nabla_{\xi} S\right) Y=\left(\nabla_{Y} S\right) \xi+\phi Y-\phi A Y=\alpha \phi S Y-S \phi S Y+\phi Y-\phi A Y
$$

From this, together with (4.7), it follows that

$$
\begin{equation*}
\alpha \phi S Y-S \phi S Y+\phi Y=3 \phi A Y \tag{4.8}
\end{equation*}
$$

From Lemma A , as $N$ is $\mathfrak{A}$-principal we obtain:

$$
\begin{equation*}
2 S \phi S Y=\alpha(S \phi+\phi S) Y+2 \phi Y \tag{4.9}
\end{equation*}
$$

Therefore, (4.8) can be written as

$$
\begin{equation*}
\alpha(\phi S-S \phi) Y=6 \phi A Y \tag{4.10}
\end{equation*}
$$

Inserting $Y=S X$ for $X \in \mathcal{C}$ into (4.10) and applying the structure tensor $\phi$ leads to

$$
\alpha S^{2} X+\alpha \phi S \phi S X=6 A S X
$$

where $\mathcal{C}=\operatorname{ker} \eta$ denotes the maximal complex subbundle of $T M$. From this, together with (4.5) and (4.9), it follows that

$$
\begin{equation*}
\alpha^{2} \phi S \phi X=-2 \alpha S^{2} X+\alpha^{2} S X+2 \alpha X+12 S X \tag{4.11}
\end{equation*}
$$

for any $X \in \mathcal{C}$.
In this section, we have assumed that the normal vector field $N$ of $M$ is $\mathfrak{A}$-principal. So, it follows that $A Y \in T M$ for all $Y \in T M$. From this, the anti-commuting property between $J$ and $A$ implies $\phi A X=-A \phi X$. Hence (4.10) can be expressed as

$$
\begin{equation*}
\alpha(\phi S-S \phi) Y=-6 A \phi Y \tag{4.12}
\end{equation*}
$$

Putting $Y=\phi X$ into (4.12), it follows

$$
\alpha \phi S \phi X=-\alpha S X+6 A X
$$

for all $X \in \mathcal{C}$. Inserting this into (4.11) gives

$$
\begin{equation*}
3 \alpha A X+\alpha S^{2} X-\alpha^{2} S X-\alpha X-6 S X=0 \tag{4.13}
\end{equation*}
$$

Applying the real structure $A$ to (4.13) and using (4.5) again, we get

$$
\begin{equation*}
3 \alpha X+\alpha S^{2} X-\alpha^{2} S X-\alpha A X-6 S X=0 \tag{4.14}
\end{equation*}
$$

for any $X \in \mathcal{C}$. Summing up (4.13) and (4.14), we obtain $A X=X$ for all $X \in \mathcal{C}$. This gives a contradiction. In fact, it is well known that the trace of the real structure $A$ vanishes, that is, $\operatorname{Tr} A=0$ (see Lemma 1 in [24]). For an
orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{2 m-2}, e_{2 m-1}=\xi, e_{2 m}=N\right\}$ for $T Q^{m}$, where $e_{j} \in \mathcal{C}(j=1,2, \ldots, 2 m-2)$, the trace of $A$ is given by

$$
\begin{aligned}
\operatorname{Tr} A & =\sum_{i=1}^{2 m} g\left(A e_{i}, e_{i}\right) \\
& =g(A N, N)+g(A \xi, \xi)+\sum_{i=1}^{2 m-2} g\left(A e_{i}, e_{i}\right) \\
& =2 m-2 .
\end{aligned}
$$

It implies $m=1$. But we have considered that $m \geq 3$.
Consequently, this completes the proof that there does not exist a Hopf real hypersurface $(\alpha \neq 0)$ in the complex quadric $Q^{m}, m \geq 3$, with Reeb parallel structure Jacobi operator and $\mathfrak{A}$-principal normal vector field.

## 5. Proof of Theorem 1.2

## - Reeb parallel structure Jacobi operator with $\mathfrak{A}$-isotropic normal vector field -

In this section, we assume that the unit normal vector field $N$ is $\mathfrak{A}$-isotropic and $M$ is a Hopf real hypersurface in complex quadric $Q^{m}$ with non-vanishing geodesic Reeb flow and Reeb parallel structure Jacobi operator. Then the normal vector field $N$ can be written as

$$
N=\frac{1}{\sqrt{2}}\left(Z_{1}+J Z_{2}\right)
$$

for some orthonormal vectors $Z_{1}, Z_{2} \in V(A)$, where $V(A)$ denotes the (+1)eigenspace of the complex conjugation $A \in \mathfrak{A}$. Then it follows that

$$
A N=\frac{1}{\sqrt{2}}\left(Z_{1}-J Z_{2}\right), A J N=-\frac{1}{\sqrt{2}}\left(J Z_{1}+Z_{2}\right) \text { and } J N=\frac{1}{\sqrt{2}}\left(J Z_{1}-Z_{2}\right)
$$

These formulas imply the following

$$
g(\xi, A \xi)=g(J N, A J N)=0, g(\xi, A N)=0 \text { and } g(A N, N)=0
$$

which means that both vector fields $A N$ and $A \xi$ are tangent to $M$. From this and Lemma C, the equation (4.4) gives us that the shape operator $S$ of $M$ becomes to be Reeb parallel, that is, $\left(\nabla_{\xi} S\right) Y=0$ for all tangent vector field $Y$ on $M$.

On the other hand, from the Codazzi equation (3.2) we obtain:

$$
\begin{aligned}
\left(\nabla_{\xi} S\right) Y & =\left(\nabla_{Y} S\right) \xi+\phi Y-g(A Y, N) A \xi+g(A \xi, Y) A N \\
& =(Y \alpha) \xi+\alpha \phi S Y-S \phi S Y+\phi Y+g(A \xi, Y) A N-g(A N, Y) A \xi \\
& =\frac{\alpha}{2}(\phi S-S \phi) Y
\end{aligned}
$$

where the third equality holds from Lemmas A and C. From this and as $M$ has non-vanishing geodesic Reeb flow, we see that $M$ has isometric Reeb flow, that is, $S \phi=\phi S$.

Consequently, we obtain:
Proposition 5.1. Let $M$ be a real hypersurface with non-vanishing geodesic Reeb flow in the complex quadric $Q^{m}, m \geq 3$. If the unit normal vector field $N$ of $M$ is $\mathfrak{A}$-isotropic and the structure Jacobi operator $R_{\xi}$ of $M$ is Reeb parallel, then the shape operator $S$ of $M$ is Reeb parallel. Moreover, it means that the Reeb flow on $M$ is isometric.

Then by virtue of Theorem A, we assert: if $M$ is a real hypersurface in the complex quadric $Q^{m}, m \geq 3$, with the assumptions given in Proposition 5.1, then $M$ is locally congruent to an open part of a tube over a totally geodesic complex projective space $\mathbb{C} P^{k}$ in $Q^{2 k}, m=2 k$.

From now on, let us check the converse problem, that is, such a tube satisfies all assumptions stated in Proposition 5.1. In order to do this, we first introduce a proposition given in [25].

Proposition A. Let $\left(\mathcal{T}_{A}\right)$ be the tube of radius $0<r<\frac{\pi}{2}$ around the totally geodesic $\mathbb{C} P^{k}$ in $Q^{2 k}$. Then the following statements hold:
(i) $\left(\mathcal{T}_{A}\right)$ is a Hopf hypersurface.
(ii) Every unit normal vector $N$ of a real hypersurfaces of type $\left(\mathcal{T}_{A}\right)$ is $\mathfrak{A}$ isotropic and therefore can be written in the form $N=\left(Z_{1}+J Z_{2}\right) / \sqrt{2}$ with some orthonormal vectors $Z_{1}, Z_{2} \in V(A)$ and $A \in \mathfrak{A}$.
(iii) $\left(\mathcal{T}_{A}\right)$ has four distinct constant principal curvatures and the property that the shape operator leaves invariant the maximal complex subbundle $\mathcal{C}$ of $T\left(\mathcal{T}_{A}\right)$. The principal curvatures and corresponding principal curvature spaces of type $\left(\mathcal{T}_{A}\right)$ are as follows.

| principal curvature | eigenspace | multiplicity |
| :--- | :--- | :---: |
| $\alpha=-2 \cot (2 r)$ | $T_{\alpha}=\mathbb{R} J N$ | 1 |
| $\beta=0$ | $T_{\beta}=\mathbb{C}\left(J Z_{1}+Z_{2}\right)$ | 2 |
| $\lambda=\tan (r)$ | $T_{\lambda}=T \mathbb{C} P^{k} \ominus \mathbb{C}\left(J Z_{1}+Z_{2}\right)$ | $2 k-2$ |
| $\mu=-\cot (r)$ | $T_{\mu}=\nu \mathbb{C} P^{k} \ominus \mathbb{C} N$ | $2 k-2$ |

Here, $T \mathbb{C} P^{k}$ and $\nu \mathbb{C} P^{k}$ denote the tangent and normal bundles of $\mathbb{C} P^{k}$, respectively. Moreover, we have $A\left(T \mathbb{C} P^{k} \ominus \mathbb{C}\left(J Z_{1}+Z_{2}\right)\right)=\nu \mathbb{C} P^{k} \ominus \mathbb{C} N$.
(iv) Each of the two focal sets of $\left(\mathcal{T}_{A}\right)$ is a totally geodesic $\mathbb{C} P^{k} \subset Q^{2 k}$.
(v) $S \phi=\phi S$ (isometric Reeb flow).
(vi) $\left(\mathcal{T}_{A}\right)$ is a homogeneous hypersurface of $Q^{2 k}$. More precisely, it is an orbit of the $U_{k+1}$-action on $Q^{2 k}$ isomorphic to $U_{k+1} / U_{k-1} U_{1}$, an $S^{2 k-1}$-bundle over $\mathbb{C} P^{k}$.

By virtue of (i) and (ii) in Proposition A, $\left(\mathcal{T}_{A}\right)$ is a Hopf real hypersurface with $\mathfrak{A}$-isotropic normal vector field $N$ in $Q^{m}$. Moreover, the structure Jacobi operator $R_{\xi}$ of a type $\left(\mathcal{T}_{A}\right)$ real hypersurface should be Reeb parallel. In fact,
from (4.2) its structure Jacobi operator is given as follows.

$$
R_{\xi} Y=\left\{\begin{array}{cl}
0 & \text { if } Y \in T_{\alpha} \oplus T_{\beta} \\
(1+\lambda) Y & \text { if } Y \in T_{\lambda} \\
(1+\mu) Y & \text { if } Y \in T_{\mu}
\end{array}\right.
$$

On the other hand, from (4.3) and the equation of Codazzi (3.2), the covariant derivative of $R_{\xi}$ along the Reeb direction becomes

$$
\begin{aligned}
\left(\nabla_{\xi} R_{\xi}\right) Y & =\alpha\left(\nabla_{\xi} S\right) Y \\
& =\alpha\left\{\left(\nabla_{Y} S\right) \xi+\phi Y-g(A N, Y) A \xi+g(A \xi, Y) A N\right\}
\end{aligned}
$$

Since $\left(\mathcal{T}_{A}\right)$ is a Hopf real hypersurface with constant principal curvature $\alpha$, it implies

$$
\left(\nabla_{\xi} R_{\xi}\right) Y=\alpha\{\alpha \phi S Y-S \phi S Y+\phi Y-g(A N, Y) A \xi+g(A \xi, Y) A N\}
$$

which vanishes identically on $\left(\mathcal{T}_{A}\right)$. That is, we can assert that the structure Jacobi operator $R_{\xi}$ of a type $\left(\mathcal{T}_{A}\right)$ real hypersurface is Reeb parallel.

## 6. Proof of Theorem 1.3 <br> - $\mathcal{C}$-parallel structure Jacobi operator -

In this section we define the new notion of $\mathcal{C}$-parallel structure Jacobi operator of a Hopf real hypersurface $M$ in the complex quadric $Q^{m}$ for $m \geq 3$ as follows: the structure Jacobi operator $R_{\xi} \in \operatorname{End}(T M)$ of $M$ satisfies

$$
\begin{equation*}
\left(\nabla_{X} R_{\xi}\right) Y=0 \tag{**}
\end{equation*}
$$

for any $X \in \mathcal{C}=\{X \in T M \mid X \perp \xi\}$ and $Y \in T M$, then it is said to be $\mathcal{C}$-parallel. In fact, by virtue of (4.3) this condition is equivalent to

$$
\begin{aligned}
& -\left(1+\alpha^{2}\right) g(Y, \phi S X) \xi-\eta(Y) \phi S X+2 g(A \xi, \phi S X) B Y \\
& +2 g(S X, A \xi) \phi B Y+3 g(S X, A \xi) g(\phi A \xi, Y) \xi \\
& +2 g(S X, A \xi) g(\phi A \xi, Y) \xi-2 g(A \xi, \xi) g(S X, Y) \phi A \xi \\
& -g(S X, A \xi) \eta(Y) \phi A \xi+g(B \phi S X, \phi Y) \phi A \xi \\
& -2 g(A \xi, \xi) g(\phi A \xi, Y) S X-g(B \phi S X, Y) A \xi-\alpha^{2} \eta(Y) \phi S X \\
& -g(A \xi, Y) B \phi S X-g(\phi A \xi, Y) \phi B \phi S X+(X \alpha) S Y \\
& +\alpha\left(\nabla_{X} S\right) Y-2 \alpha(X \alpha) \eta(Y) \xi=0
\end{aligned}
$$

for any $X \in \mathcal{C}, Y \in T M$. By using this equation, we obtain:
Proposition 6.1. Let $M$ be a Hopf real hypersurface in the complex quadric $Q^{m}, m \geq 3$. If the structure Jacobi operator $R_{\xi}$ of $M$ is $\mathcal{C}$-parallel, then the unit normal vector field $N$ is singular.

Proof. From Remark 3.1 and the definition of $\mathfrak{A}$-isotropic normal vector field, if either the Reeb curvature function $\alpha=g(S \xi, \xi)$ or $\beta=g(A \xi, \xi)$ vanish, then
the normal vector field $N$ should be singular. So, hereafter let us assume that two functions $\alpha$ and $\beta$ are non-vanishing.

Taking the inner product of (6.1) with $\xi$, we get

$$
\begin{align*}
& g(S \phi Y, X)-2 g(A \xi, Y) g(S \phi A \xi, X)+5 g(\phi A \xi, Y) g(S A \xi, X)  \tag{6.2}\\
& +\beta g(S \phi B Y, X)+g(A \xi, Y) g(S \phi A \xi, X)+\alpha g(S \phi S Y, X)=0
\end{align*}
$$

for any $X \in \mathcal{C}$ and $Y \in T M$. This equation yields

$$
-\phi S X-g(S \phi A \xi, X) A \xi+5 g(S A \xi, X) \phi A \xi-\beta B \phi S X-\alpha S \phi S X=0
$$

for all $X \in \mathcal{C}$. Taking its inner product with $A \xi$ and using $B A \xi=\xi$, it gives us

$$
\alpha g(S \phi S A \xi, X)=0
$$

for any $X \in \mathcal{C}$. Since $\alpha \neq 0$, we have $g(S \phi S A \xi, X)=0$ for any $X \in \mathcal{C}$, which implies that

$$
S \phi S A \xi=g(S \phi S A \xi, \xi) \xi=0 .
$$

From this and taking $X=A \xi$ in (3.6), we get

$$
\begin{equation*}
\alpha S \phi A \xi=-\alpha \phi S A \xi-2 \beta^{2} \phi A \xi \tag{6.3}
\end{equation*}
$$

In addition, we put

$$
\begin{aligned}
W_{Y}= & S \phi Y-2 g(A \xi, Y) S \phi A \xi+5 g(\phi A \xi, Y) S A \xi \\
& +\beta S \phi B Y+g(A \xi, Y) S \phi A \xi+\alpha S \phi S Y
\end{aligned}
$$

for any $Y \in T M$. Then, from (6.2) and using that $M$ is Hopf, we see that

$$
W_{Y}=g\left(W_{Y}, \xi\right) \xi=5 \alpha \beta g(\phi A \xi, Y) \xi
$$

That is,

$$
\begin{align*}
5 \alpha \beta g(\phi A \xi, Y) \xi= & S \phi Y-2 g(A \xi, Y) S \phi A \xi+5 g(\phi A \xi, Y) S A \xi  \tag{6.4}\\
& +\beta S \phi B Y+g(A \xi, Y) S \phi A \xi+\alpha S \phi S Y
\end{align*}
$$

for any $Y \in T M$. Taking $\phi Y$ instead of $Y$ in (6.4) and using $\phi^{2} Y=-Y+\eta(Y) \xi$, it yields

$$
\begin{aligned}
& 5 \alpha \beta g(A \xi, Y) \xi-5 \alpha \beta^{2} \eta(Y) \xi \\
(6.5) & -S Y+\alpha \eta(Y) \xi+g(\phi A \xi, Y) S \phi A \xi+5 g(A \xi, Y) S A \xi-5 \beta \eta(Y) S A \xi \\
& +\beta S B Y-\alpha \beta g(A \xi, Y) \xi-\beta \eta(Y) S A \xi+\alpha \beta^{2} \eta(Y) \xi+\alpha S \phi S \phi Y
\end{aligned}
$$

for any $Y \in T M$. Putting $Y=A \xi$ in (6.5), we get

$$
\begin{equation*}
\alpha S \phi S \phi A \xi=2\left(2-3 \beta^{2}\right)\{\alpha \beta \xi-S A \xi\} . \tag{6.6}
\end{equation*}
$$

On the other hand, putting $X=\phi A \xi$ in (3.7), it gives us

$$
\begin{equation*}
2 S \phi S \phi A \xi=\alpha \phi S \phi A \xi-\alpha S A \xi+\alpha^{2} \beta \xi-2 \beta^{2} A \xi+2 \beta^{3} \xi \tag{6.7}
\end{equation*}
$$

where we have used $A N=A J \xi=-J A \xi=-\phi A \xi-\beta N$ and $g(\phi A \xi, \phi A \xi)=$ $1-\beta^{2}$. From this and using (6.3), we obtain:

$$
S \phi S \phi A \xi=0 .
$$

Thus, (6.6) becomes

$$
\left(2-3 \beta^{2}\right)\{\alpha \beta \xi-S A \xi\}=0
$$

From this, we have the following two cases.

- Case I. $\beta^{2}=\frac{2}{3}$

Since $\beta \neq 0$, we see that $\beta=g(A \xi, \xi)=-\cos (2 t), t \in\left[0, \frac{\pi}{4}\right)$. That is, the function $\beta$ should be constant, therefore $Y \beta=0$ for any $Y \in T M$. Thus from (3.18), we get $S \phi A \xi=0$. Moreover, by using (6.7), we also obtain:

$$
\begin{equation*}
\alpha S A \xi=\beta\left(\alpha^{2}+2 \beta^{2}\right) \xi-2 \beta^{2} A \xi \tag{6.8}
\end{equation*}
$$

On the other hand, under our assumptions and using the fact that $S \phi A \xi=0$, (3.11) can be rewritten as

$$
\begin{aligned}
& (\xi \alpha) g(\phi S Y, X)+4 g(S A \xi, Y) g(A \xi, X)-2 \beta g(B S Y, X) \\
= & -2 \beta g(S A \xi, X) \eta(Y)+2 \alpha \beta g(A \xi, X) \eta(Y)+(\xi \alpha) g(\phi S X, Y) \\
& +4 g(S A \xi, X) g(A \xi, Y)-2 \beta g(B S X, Y)
\end{aligned}
$$

for any $X \in \mathcal{C}$ and $Y \in T M$. Putting $X=\phi A \xi \in \mathcal{C}$ and $S \phi A \xi=0$, it yields

$$
\begin{equation*}
(\xi \alpha) g(\phi S Y, \phi A \xi)-2 \beta g(B S Y, \phi A \xi)=0 . \tag{6.9}
\end{equation*}
$$

From (3.15), we have $B \phi A \xi=\beta \phi A \xi$, which implies

$$
g(B S Y, \phi A \xi)=\beta g(S Y, \phi A \xi)=0
$$

Thus (6.9) becomes $(\xi \alpha) g(\phi S Y, \phi A \xi)=0$ for any tangent vector field $Y$ on $M$. It implies that

$$
(\xi \alpha)\{S A \xi-\alpha \beta \xi\}=0
$$

- Subcase I-1. $S A \xi=\alpha \beta \xi$

Since $\alpha \neq 0$, this assumption becomes $\alpha S A \xi=\alpha^{2} \beta \xi$. From this and (6.8), we get

$$
A \xi=\beta \xi .
$$

Taking the inner product with $A \xi$, it implies that $\beta^{2}=1$. It makes a contradiction with our condition $\beta^{2}=\frac{2}{3}$.

- Subcase I-2. $\xi \alpha=0$

Under this assumption, (3.19) becomes

$$
-2 \beta(S A \xi, Y)+2 \alpha \beta g(A \xi, Y)=0, \quad \forall Y \in T M
$$

From this and $\beta \neq 0$, we get $S A \xi=\alpha A \xi$. Then, (6.8) gives

$$
\left(\beta \alpha^{2}+2 \beta^{3}\right) \xi-2 \beta^{2} A \xi=\alpha^{2} A \xi
$$

Taking the inner product with $A \xi$, it leads to $\left(\alpha^{2}+2 \beta^{2}\right)\left(\beta^{2}-1\right)=0$. But $\beta^{2}=\frac{2}{3}$ and it makes a contradiction.

Summing up these two subcases, we can assert that the first case of $\beta^{2}=\frac{2}{3}$ does not occur.

- Case II. $S A \xi=\alpha \beta \xi$

Under this assumption, the equation (3.11) in Lemma 3.5 becomes

$$
\begin{align*}
& 2 \alpha \beta g(A \xi, X) \eta(Y)+(\xi \alpha) g(\phi S X, Y) \\
& +4 g(S \phi A \xi, X) g(\phi A \xi, Y)-2 \beta g(B S X, Y) \\
= & (\xi \alpha) g(\phi S Y, X)+4 g(S \phi A \xi, Y) g(\phi A \xi, X)  \tag{6.10}\\
& +4 \alpha \beta \eta(Y) g(A \xi, X)-2 \beta g(B S Y, X)
\end{align*}
$$

for any $X \in \mathcal{C}$ and $Y \in T M$. Put

$$
\begin{aligned}
W_{Y}= & 2 \alpha \beta \eta(Y) A \xi-(\xi \alpha) S \phi Y+4 g(\phi A \xi, Y) S \phi A \xi-2 \beta S B Y \\
& -(\xi \alpha) \phi S Y-4 g(S \phi A \xi, Y) \phi A \xi-4 \alpha \beta \eta(Y) A \xi+2 \beta B S Y
\end{aligned}
$$

for any $Y \in T M$. From (6.10), we get $W_{Y}=g\left(W_{Y}, \xi\right) \xi=-2 \alpha \beta g(A \xi, Y) \xi$, which is equivalent to

$$
\begin{gather*}
2 \alpha \beta \eta(Y) A \xi-(\xi \alpha) S \phi Y+4 g(\phi A \xi, Y) S \phi A \xi-2 \beta S B Y-(\xi \alpha) \phi S Y \\
-4 g(S \phi A \xi, Y) \phi A \xi-4 \alpha \beta \eta(Y) A \xi+2 \beta B S Y=-2 \alpha \beta g(A \xi, Y) \xi \tag{6.11}
\end{gather*}
$$

for any $Y \in T M$. Taking the inner product with $A \xi$ and bearing in mind that $\phi S A \xi=0$ and $B A \xi=\xi$, it yields

$$
\begin{equation*}
(\xi \alpha) g(S \phi A \xi, Y)=0, \quad \forall Y \in T M \tag{6.12}
\end{equation*}
$$

Besides, by virtue of (6.3), our condition, $S A \xi=\alpha \beta \xi$, gives us

$$
\alpha S \phi A \xi=-2 \beta^{2} \phi A \xi
$$

From this and $\alpha \neq 0$, the equation (6.12) leads to

$$
\begin{equation*}
0=\alpha(\xi \alpha) g(S \phi A \xi, Y)=-2 \beta^{2}(\xi \alpha) g(\phi A \xi, Y), \quad \forall Y \in T M \tag{6.13}
\end{equation*}
$$

Substituting $Y=\phi A \xi$ in (6.13) and using $\beta \neq 0$, it becomes

$$
(\xi \alpha)\left(1-\beta^{2}\right)=0
$$

- Subcase II-1. $\beta^{2}=1$

Since $\beta=g(A \xi, \xi)=-\cos 2 t, t \in\left[0, \frac{\pi}{4}\right)$, it means that $\beta=-1$ (i.e., $t=0$ ). Then, from the definition of $\mathfrak{A}$-principal tangent vector field of $Q^{m}$, we see that the normal vector field $N$ of $M$ should be $\mathfrak{A}$-principal.

- Subcase II-2. $\xi \alpha=0$

Since $S A \xi=\alpha \beta \xi$ and $\xi \alpha=0,(3.19)$ becomes

$$
\begin{equation*}
2 \alpha \beta g(A \xi, X)=0 \tag{6.14}
\end{equation*}
$$

for any $X \in \mathcal{C}$. Since $\alpha \neq 0$ and $\beta \neq 0$, it implies that $A \xi=g(A \xi, \xi) \xi=\beta \xi$. Taking its inner product with $A \xi$, we obtain $\beta^{2}=1$, which means that the normal vector field $N$ is $\mathfrak{A}$-principal.

Summing up these all observations, we give a complete proof of our proposition.

From now on, from Proposition 6.1, let us consider the case of $\mathfrak{A}$-principal normal vector field.

Lemma 6.2. Let $M$ be a Hopf real hypersurface with $\mathcal{C}$-parallel structure Jacobi operator in the complex quadric $Q^{m}, m \geq 3$. If the normal vector field $N$ of $M$ is $\mathfrak{A}$-principal, then $M$ has isometric Reeb flow.
Proof. As mentioned in Lemma B, if $M$ has an $\mathfrak{A}$-principal normal vector field, then the Reeb curvature function $\alpha$ is constant. So, if a Hopf real hypersurface $M$ has $\mathcal{C}$-parallel structure Jacobi operator and $\mathfrak{A}$-principal normal vector field $N$, then (6.1) becomes

$$
\begin{align*}
& -\left(1+\alpha^{2}\right) g(Y, \phi S X) \xi-\eta(Y) \phi S X+g(B \phi S X, Y) \xi \\
& -\alpha^{2} \eta(Y) \phi S X+\eta(Y) B \phi S X+\alpha\left(\nabla_{X} S\right) Y=0 \tag{6.15}
\end{align*}
$$

for any $X \in \mathcal{C}$ and $Y \in T M$. Putting $Y=\xi$ in (6.15) and using the formulas (a) and (b) in Lemma 3.3, it follows

$$
-2 \phi S X-\alpha S \phi S X=0
$$

for any $X \in \mathcal{C}$. Since $M$ is Hopf, we also obtain that $-2 \phi S \xi-\alpha S \phi S \xi=0$. Accordingly, we assert that

$$
\begin{equation*}
\alpha S \phi S Y=-2 \phi S Y \tag{6.16}
\end{equation*}
$$

for any $Y \in T M$. Taking the symmetric part of (6.16), we obtain

$$
\begin{equation*}
\alpha S \phi S Y=-2 S \phi Y \tag{6.17}
\end{equation*}
$$

for any $Y \in T M$. From (6.16) and (6.17), we see that the shape operator $S$ commutes with the structure tensor $\phi$, that is, $S \phi Y=\phi S Y$ for all $Y \in T M$. It means that $M$ has isometric Reeb flow.

From this lemma and Theorem A, we assert that if a Hopf real hypersurface $M$ in $Q^{m}$ with $m \geq 3$ satisfies the conditions in Lemma 6.2, then $M$ is locally congruent to a model space of type $\left(\mathcal{T}_{A}\right)$. But by virtue of Proposition A in Section 5 , a model space of type $\left(\mathcal{T}_{A}\right)$ has an $\mathfrak{A}$-isotropic normal vector field. So, we conclude:

Proposition 6.3. There does not exist a Hopf real hypersurface in the complex quadric $Q^{m}, m \geq 3$, with $\mathcal{C}$-parallel structure Jacobi operator and $\mathfrak{A}$-principal unit normal vector field.

In the remained part, let us consider that a Hopf real hypersurface $M$ in $Q^{m}$ with $\mathcal{C}$-parallel structure Jacobi operator has $\mathfrak{A}$-isotropic normal vector field $N$. Using the facts mentioned in Section 3, for example, Lemmas C and 3.2, the equation (6.1) becomes

$$
\begin{align*}
& -\left(1+\alpha^{2}\right) g(Y, \phi S X) \xi-\eta(Y) \phi S X+g(B \phi S X, \phi Y) \phi A \xi \\
& -g(B \phi S X, Y) A \xi-\alpha^{2} \eta(Y) \phi S X-g(A \xi, Y) B \phi S X  \tag{6.18}\\
& -g(\phi A \xi, Y) \phi B \phi S X+\alpha\left(\nabla_{X} S\right) Y=0
\end{align*}
$$

for any $X \in \mathcal{C}$ and $Y \in T M$. By using this equation, we obtain:

Lemma 6.4. Let $M$ be a Hopf real hypersurface with $\mathcal{C}$-parallel structure Jacobi operator in the complex quadric $Q^{m}, m \geq 3$. If the normal vector field $N$ of $M$ is $\mathfrak{A}$-isotropic, then $M$ has isometric Reeb flow.

Proof. Taking the inner product of (6.18) with $\xi$ and using that $\left(\nabla_{Y} S\right) \xi=$ $(Y \alpha) \xi+\alpha \phi S Y-S \phi S Y$, then we get

$$
g(Y, \phi S X)+\alpha g(S \phi S X, Y)=0, \quad \forall X \in \mathcal{C}, Y \in T M
$$

From this, we obtain that

$$
\begin{equation*}
\alpha S \phi S Y+S \phi Y=g(\alpha S \phi S Y+S \phi Y, \xi) \xi=0 \tag{6.19}
\end{equation*}
$$

for any $Y \in T M$. Moreover, the skew-symmetric part of this equation becomes

$$
\begin{equation*}
\alpha S \phi S Y+\phi S Y=0 . \tag{6.20}
\end{equation*}
$$

Subtracting (6.20) from (6.19), we have $S \phi Y-\phi S Y=0$. Hence we complete the proof of this lemma.

Bearing in mind Theorem A, this lemma tells us that if a Hopf real hypersurface $M$ in $Q^{m}$, $m \geq 3$, satisfies the conditions in Lemma 6.4, then $M$ is locally congruent to a model space of type $\left(\mathcal{T}_{A}\right)$. Now, by using the information for $\left(\mathcal{T}_{A}\right)$ given in Proposition A let us check the converse statement, that is, when a model space of type $\left(\mathcal{T}_{A}\right)$ satisfies the conditions in Lemma 6.4. From Proposition $A$, we already know that $\left(\mathcal{T}_{A}\right)$ is a Hopf real hypersurface with $\mathfrak{A}$-isotropic normal vector field. So, now, we want to check whether $\left(\mathcal{T}_{A}\right)$ has $\mathcal{C}$-parallel structure Jacobi operator or not. In order to do this, we assume that the structure Jacobi operator $R_{\xi}$ of type $\left(\mathcal{T}_{A}\right)$ is $\mathcal{C}$-parallel.

On the other hand, since the Reeb flow of a type $\left(\mathcal{T}_{A}\right)$ real hypersurface is isometric, we can use the equation for $\left(\nabla_{X} S\right) Y$ given by Berndt and Suh (see page 1350050-14 in [2]). Then the equation with respect to the $\mathcal{C}$-parallelism for the structure Jacobi operator $R_{\xi}$ of type $\left(\mathcal{T}_{A}\right)$ real hypersurfaces becomes

$$
\begin{align*}
& -\left(1+\alpha^{2}\right) g(Y, \phi S X) \xi-\eta(Y) \phi S X+g(B \phi S X, \phi Y) \phi A \xi \\
& -g(B \phi S X, Y) A \xi-\alpha^{2} \eta(Y) \phi S X-g(A \xi, Y) B \phi S X \\
& -g(\phi A \xi, Y) \phi B \phi S X+\alpha^{2} g(S \phi X, Y) \xi  \tag{6.21}\\
& -\alpha g\left(S^{2} \phi X, Y\right) \xi+\alpha g(A \xi, X) g(A N, Y) \xi \\
& +\alpha \eta(Y) g(A N, X) A \xi+\alpha g(B X, \phi Y) A \xi+\alpha g(B X, Y) \phi A \xi \\
& -\alpha g(A N, Y) B X-\alpha \eta(Y) \phi X-\alpha g(A \xi, Y) \phi B X=0
\end{align*}
$$

for any $X \in \mathcal{C}$ and $Y \in T_{[z]}\left(\mathcal{T}_{A}\right)$. Since $\mathcal{C}=T_{\beta} \oplus T_{\lambda} \oplus T_{\mu}$, we may take $X \in T_{\lambda}$. Then we get

$$
S X=\lambda X \quad \text { and } \quad S \phi X=\lambda \phi X
$$

From this, (6.21) can be rewritten as

$$
\begin{align*}
& -\left(1+\alpha^{2}\right) \lambda g(Y, \phi X) \xi-\lambda \eta(Y) \phi X+\lambda g(B \phi X, \phi Y) \phi A \xi \\
& -\lambda g(B \phi X, Y) A \xi-\alpha^{2} \lambda \eta(Y) \phi X-\lambda g(A \xi, Y) B \phi X \\
& -\lambda g(\phi A \xi, Y) \phi B \phi X+\alpha^{2} \lambda g(\phi X, Y) \xi-\alpha \lambda^{2} g(\phi X, Y) \xi  \tag{6.22}\\
& +\alpha g(B X, \phi Y) A \xi+\alpha g(B X, Y) \phi A \xi \\
& -\alpha g(A N, Y) B X-\alpha \eta(Y) \phi X-\alpha g(A \xi, Y) \phi B X=0
\end{align*}
$$

for any $X \in T_{\lambda}, Y \in T_{[z]}\left(\mathcal{T}_{A}\right)$. Putting $Y=\xi$ and using $-\phi A \xi=A N$, this equation gives us

$$
\begin{equation*}
-\left(\lambda+\alpha^{2} \lambda+\alpha\right) \phi X=0 \tag{6.23}
\end{equation*}
$$

for any $X \in T_{\lambda}$. Moreover, substituting $Y=A \xi \in T_{\beta}$ in (6.22), it implies

$$
\begin{equation*}
-\lambda B \phi X-\alpha \phi B X=0 \tag{6.24}
\end{equation*}
$$

for all $X \in T_{\lambda}$. From (3.15), we see that $B \phi X=-\phi B X$ for any $X \in T_{\lambda}$. Therefore, (6.24) becomes $(\lambda-\alpha) \phi B X=0$, which yields $\alpha=\lambda$. Combining this formula and (6.23), it makes a contradiction. Hence we conclude:

Proposition 6.5. There does not exist a Hopf real hypersurface in the complex quadric $Q^{m}, m \geq 3$, with $\mathcal{C}$-parallel structure Jacobi operator and $\mathfrak{A}$-isotropic unit normal vector field.

## References

[1] J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex twoplane Grassmannians, Monatsh. Math. 137 (2002), no. 2, 87-98. https://doi.org/10. 1007/s00605-001-0494-4
[2] , Real hypersurfaces with isometric Reeb flow in complex quadrics, Internat. J. Math. 24 (2013), no. 7, 1350050, 18 pp. https://doi.org/10.1142/S0129167X1350050X
[3] , Contact hypersurfaces in Kähler manifolds, Proc. Amer. Math. Soc. 143 (2015), no. 6, 2637-2649. https://doi.org/10.1090/S0002-9939-2015-12421-5
[4] A. L. Besse, Einstein Manifolds, reprint of the 1987 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2008.
[5] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, corrected reprint of the 1978 original, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001. https://doi.org/10.1090/gsm/034
[6] I. Jeong, H. Lee, and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians whose structure Jacobi operator is of Codazzi type, Acta Math. Hungar. 125 (2009), no. 1-2, 141-160. https://doi.org/10.1007/s10474-009-8245-4
[7] I. Jeong, J. D. Pérez, and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel structure Jacobi operator, Acta Math. Hungar. 122 (2009), no. 1-2, 173-186. https://doi.org/10.1007/s10474-008-8004-y
[8] I. Jeong, Y. J. Suh, and C. Woo, Real hypersurfaces in complex two-plane Grassmannians with recurrent structure Jacobi operator, in Real and Complex Submanifolds, 267-278, Springer Proc. Math. Stat., 106, Springer, Tokyo, 2014. https://doi.org/10. 1007/978-4-431-55215-4_23
[9] U.-H. Ki, J. D. Pérez, F. G. Santos, and Y. J. Suh, Real hypersurfaces in complex space forms with $\xi$-parallel Ricci tensor and structure Jacobi operator, J. Korean Math. Soc. 44 (2007), no. 2, 307-326. https://doi.org/10.4134/JKMS.2007.44.2.307
[10] S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl. 26 (2008), no. 1, 79-96. https://doi.org/10.1016/j.difgeo.2007.11.004
[11] A. W. Knapp, Lie Groups Beyond an Introduction, second edition, Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, 2002.
[12] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. II, reprint of the 1969 original, Wiley Classics Library, John Wiley \& Sons, Inc., New York, 1996.
[13] H. Lee, J. D. Pérez, and Y. J. Suh, Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric, Bull. London Math. Soc. 52 (2020), 1122-1133. http://doi.org/10.1112/blms. 12386
[14] H. Lee and Y. J. Suh, Real hypersurfaces with recurrent normal Jacobi operator in the complex quadric, J. Geom. Phys. 123 (2018), 463-474. https://doi.org/10.1016/j. geomphys.2017.10.003
[15] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364. https://doi.org/10.2307/1998631
[16] J. D. Pérez, On the structure vector field of a real hypersurface in complex quadric, Open Math. 16 (2018), no. 1, 185-189. https://doi.org/10.1515/math-2018-0021
[17] $\qquad$ , Commutativity of torsion and normal Jacobi operators on real hypersurfaces in the complex quadric, Publ. Math. Debrecen 95 (2019), no. 1-2, 157-168. https: //doi.org/10.5486/pmd.2019.8424
[18] J. D. Pérez and F. G. Santos, Real hypersurfaces in complex projective space with recurrent structure Jacobi operator, Differential Geom. Appl. 26 (2008), no. 2, 218-223. https://doi.org/10.1016/j.difgeo.2007.11.015
[19] J. D. Pérez, F. G. Santos, and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie $\xi$-parallel, Differential Geom. Appl. 22 (2005), no. 2, 181-188. https://doi.org/10.1016/j.difgeo.2004.10.005
[20] J. D. Pérez and Y. J. Suh, Derivatives of the shape operator of real hypersurfaces in the complex quadric, Results Math. 73 (2018), no. 3, Paper No. 126, 10 pp. https: //doi.org/10.1007/s00025-018-0888-4
[21] H. Reckziegel, On the geometry of the complex quadric, in Geometry and topology of submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995), 302-315, World Sci. Publ., River Edge, NJ, 1996.
[22] A. Romero, Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric, Proc. Amer. Math. Soc. 98 (1986), no. 2, 283-286. https://doi.org/ 10.2307/2045699
[23] , On a certain class of complex Einstein hypersurfaces in indefinite complex space forms, Math. Z. 192 (1986), no. 4, 627-635. https://doi.org/10.1007/BF01162709
[24] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. (2) 85 (1967), 246-266. https://doi.org/10.2307/1970441
[25] Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, Internat. J. Math. 25 (2014), no. 6, 1450059, 17 pp. https://doi.org/10.1142/ S0129167X14500591
[26] _, Real hypersurfaces in the complex quadric with Reeb invariant shape operator, Differential Geom. Appl. 38 (2015), 10-21. https://doi.org/10.1016/j.difgeo. 2014. 11.003
[27] , Real hypersurfaces in the complex quadric with parallel Ricci tensor, Adv. Math. 281 (2015), 886-905. https://doi.org/10.1016/j.aim.2015.05.012
[28] , Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl. (9) 106 (2016), no. 3, 393-410. https://doi.org/10.1016/j.matpur. 2016. 02.015
[29] , Real hypersurfaces in the complex quadric with parallel structure Jacobi operator, Differential Geom. Appl. 51 (2017), 33-48. https://doi.org/10.1016/j.difgeo. 2017.01.001
[30] Y. J. Suh and D. H. Hwang, Real hypersurfaces in the complex quadric with commuting Ricci tensor, Sci. China Math. 59 (2016), no. 11, 2185-2198. https://doi.org/10.1007/ s11425-016-0067-7

Hyunjin Lee
Research Institute of Real and Complex Manifolds (RIRCM)
Kyungpook National University
Daegu 41566, Korea
Email address: lhjibis@hanmail.net
Young Jin Suh
Department of Mathematics \& RIRCM
Kyungpook National University
Daegu 41566, Korea
Email address: yjsuh@knu.ac.kr


[^0]:    Received June 2, 2020; Revised September 8, 2020; Accepted October 12, 2020.
    2010 Mathematics Subject Classification. 53C40, 53C55.
    Key words and phrases. Reeb parallel structure Jacobi operator, $\mathcal{C}$-parallel structure Jacobi operator, singular normal vector field, Kähler structure, complex conjugation, complex quadric.

    The first author was supported by grant Proj. No. NRF-2019-R1I1A1A-01050300 and the second author by grant Proj. No. NRF-2018-R1D1A1B-05040381 from National Research Foundation of Korea.

