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NUMERICAL SOLUTIONS FOR ONE AND TWO
DIMENSIONAL NONLINEAR PROBLEMS RELATED TO
DISPERSION MANAGED SOLITONS

YOUNGHOON KANG, EUNJUNG LEE, AND YOUNG-RAN LEE

ABSTRACT. We study behavior of numerical solutions for a nonlinear
eigenvalue problem on R"™ that is reduced from a dispersion managed non-
linear Schrédinger equation. The solution operator of the free Schrédinger
equation in the eigenvalue problem is implemented via the finite differ-
ence scheme, and the primary nonlinear eigenvalue problem is numerically
solved via Picard iteration. Through numerical simulations, the results
known only theoretically, for example the number of eigenpairs for one di-
mensional problem, are verified. Furthermore several new characteristics
of the eigenpairs, including the existence of eigenpairs inherent in zero
average dispersion two dimensional problem, are observed and analyzed.

1. Introduction

Dispersion management systems are widely used in optical business with
various applications. Primarily, they are utilized to find a fast and stable man-
ner to transfer data through fiber-optic cables over long distance. In fact, such
optical systems have facilitated almost zero path-averaged dispersion curtail-
ing pulse widening, and an actual experimental result had demonstrated the
effects of this technique in [24]. Nowadays, numerous numerical researches on
nonlinear Schrédinger equation related to the same field are still active [3,22].

This paper focuses on numerical study of unsolved theoretical characteristics
related to the following nonlinear problem, known as the dispersion managed
nonlinear Schrédinger equation (DM NLS):

(1) i0pu + d(t)V?u + |u*u = 0,

where the Laplacian V? is either 82 in R or 92 + 82, in R?. Here t € R
describes the distance along the fiber-optic cable. For = € R, x is the retarded
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time, while x := (21,72) € R? is the coordinate of the section orthogonal to
the fiber. The function d(t) is defined as

d() = La, (i) +da

€

with the 2-periodic function

-1, ifte[-1,0)
do(t) =
o) { 1, iftelo,1)

in which d,y is the average (residual) dispersion over one period and ¢ is a
small parameter in a strong dispersion regime. By rescaling ¢ to t/e and aver-
aging over the period, equation (1) is transformed into the following Gabitov—
Turitsyn equation [10]

1
(2) 1040 + eday V20 + e/ T (| Tw]? Tov)dr = 0,
0

where T; is the solution operator of the free Schrédinger equation on L2 (R™)
for n = 1,2. More precisely, u(z,t) = (Tif)(z) is the solution of the initial
value problem

(3) i0pu = —V?u

with u(z,0) = f(x), where z is a scalar variable in R and is a vector variable,
x = (z1,72), in R%2. The averaging procedure from (1) to (2) was justified
by Zharnitsky et al. in [32]. The usage of a standing wave with the ansatz
v(z,t) = e f(x) in (2) yields

1
4) Cwf = —da VP — /0 T (T PTLS) de

whose solution is called a dispersion managed soliton.
With the help of a variational principle, we can obtain an important func-
tional

. dav 1! 4 . —
© el S - [ moe) i =)

related to (4) for n = 1,2 which has been addressed in many mathematical
studies as a constrained minimization problem. In the one-dimensional prob-
lem, (5) was used to show the existence of a weak solution for (4) in [32] and
[17] when d,y > 0 and d,, = 0, respectively. It is not obvious to show that
minimizers of (5) are smooth when d,, = 0, while the case d,, > 0 can be
easily handled by bootstrapping, as in [13,26,32]. Moreover, it is shown that
the weak solutions decay exponentially at infinity for both cases in [7,11]. For
further information, consult the review paper [28] and the references therein.
The two-dimensional case has also long been of interest to many researchers.
In [32], Zharnitsky et al. proved the existence of minimizers to (5) for n = 2
as well. Kunze constructed a sequence of radially symmetric minimizers of (5)



NUMERICAL SOLUTIONS FOR DISPERSION MANAGED SOLITONS 837

when w > 0 and d,, > 0 [15]. When d,, = 0, it was proved by Stanislavova
that there can be no minimizers of (5) (see [26]).

Various numerical studies were performed to solve (1) and other versions
of the equation, including (2) and (4), owing to the lack of known explicit
forms of solutions to them [1,2,5,6,8,18-21,23,25,27,29-31]. Many approaches
to the one-dimensional case utilized the pseudo-spectral schemes and the finite
difference methods to obtain approximations for DM NLS. Taha et al. compared
the results when explicit and implicit finite difference methods, a split step
Fourier method, and a pseudo-spectral method were applied to DM NLS [27].
Chang et al. introduced two unique linearized Crank—Nicolson schemes to find
approximations for DM NLS [5]. Zhang et al. used the Crank—Nicolson linear
implicit scheme in their numerical simulations [8]. Delfour et al. presented a
numerical solution of a modified DM NLS, including a dissipation term using
a finite difference method [6] and a Sanz—Serna generalized Delfour’s scheme
[25]. In [25], the leap-frog technique and a modified Crank-Nicolson method
were applied to the nonlinear Schrédinger equation. The scheme in [29] used
the central difference formula in time and space derivatives. Xie et al. applied
two compact finite difference schemes to one-dimensional NLS, which provided
higher accuracy [31]. Wu performed DuFort-Frankel-type methods for linear
and nonlinear Schrodinger equations [30]. Liu et al. showed a split step Fourier
method that is fast in computing [18]. The Gabitov—Turitsyn equation model
(2) has also been studied through numerical simulations for years. Ablowitz et
al. addressed the d,, = 1 case in (2) and performed a numerical computation
of the d,y = 0 case for (4) as well [2]. Lushnikov researched the same case in
similar ways [19]. His other attempts to solve (4) numerically employed the
fast Fourier transformation in |day| < 1 case [20, 21].

There are relatively few studies on higher dimensional problems than on one-
dimensional ones. Abdullaev et al. dealt with (1) by using the two-dimensional
fast Fourier transform [1]. Matuszewski et al. studied both the two-dimensional
and the three-dimensional cases [23]. He focused on the stability region for the
two cases and confirmed the unconditional instability for the three-dimensional
case. Zharnitsky et al. verified the possibility of the existence of ground states
by numerical computations when d,, > 0[33] in two dimensions.

Our objective is to find numerical eigenpairs (w, f) of (4) with day > 0
and dny = 0. Numerical studies stated above focus on getting f when w is
fixed. In this paper, we do not fix w, if not necessary, but find both w and f.
The high order finite difference schemes, including Runge-Kutta fourth order
method and fourth order centered scheme, are utilized in order to increase
the accuracy of numerical solution and mesh/step sizes are carefully chosen to
handle the numerical stability. We numerically verify the existence of nontrivial
eigenpairs and explore how many of them exist. Note that if (w, f) is an
eigenpair corresponding to some d,y, then (cw,+/cf) is one corresponding to
cdy, for any positive constant ¢. This implies that, for instance, if the L2-norm
of f is not restricted, then one can obtain infinitely many triples (day,w, f)
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satisfying (4). We first prove this and then numerically verify it. Additionally,
we show the convergence of w and f when d,, approaches 0 in one-dimensional
space as well as in two-dimensional space. Considering the result in [26], we
can wonder if the two dimensional case with d,, = 0 can have a solution unlike
the constrained minimization problem in [26]. Through the computation, we
discover the possibility that this two dimensional problem can be solvable.

2. Numerical approximation to the nonlinear Schrédinger equation

This section is composed of two parts. First, we present an implementa-
tion of the solution operator T} for the free Schrodinger equation (3). Then,
we construct a numerical approximation of the problem (4). Here, the de-
tailed techniques will only be described with a one-dimensional problem to
ease understanding, as the notations are simpler. The overall process with the
two-dimensional problem is analogous.

Considering equation (3) for x € R, the domain 2 is set as Q = (—a, a) x
(0,1) for sufficiently large o > 0. Furthermore, we may assume that the equa-
tion holds the homogeneous Dirichlet boundary condition for u, u(+c,-) = 0,
owing to the result that f(z) decays exponentially as x tends to infinity [7].
The same strategy is applied to the two-dimensional problem by setting

0= {x (z1,22) | |x| := /23 + 23 <a} x (0,1)

and by assuming u(x,-) = 0 when |x| = a.
2.1. Implementation of the operator T}

Recall the free Schrodinger equation and the operator T; in (3): let u =
T.f be the solution to the following problem id,u = —0d2u with the initial
condition u(z,0) = f(z). Throughout this paper, we set « = 20 and confine ¢-
interval to (0, 1) with uniform discretization (Ax,At), with mesh sizes of z and
t, respectively. Let UJ" be an approximation corresponding to u(xj,ty) in which
(zj,tn) = (—a+ jAz,nAt) for 0 < j < M :=2a/Az, 0 <n < N :=1/At.
The Runge-Kutta fourth order method(RK4) is employed for d;u-discretization
and a fourth order central difference scheme is used for 92u-discretization such
that

(~UP_, +16U7_, — 30U7 + 16U7,, — UP,,)

12(Ax)? '

O2u(zj,ty) ~ DQU;-I =

2.2. Numerical computation of (4)

Since the equation (4) is nonlinear, we utilize Picard iteration to identify a
proper approximation of f. First the problem is transformed to the equivalent
problem to solve P(f) = 0, where

1
(6) P(f):wf—davf”—/o T, YT, f T, f T, f) dt .
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When one solves P(f) = 0 using Picard iteration, the system is first decom-
posed into linear and nonlinear parts such as P(f) = Lf + N(f), where L is
the linear operator, Lf = wf — d.,f”, and N is the nonlinear operator. Then,
it is solved iteratively

(7) L = N (1)

with given initial conditions w(® and f(°). Hence, with the selected initial
conditions w(® and f(%), the implementation of the right hand side in (7) plays
a key role in this paper. From now until (11), we omit the iteration index in
the Picard iterative process ‘(k)’ for notational simplicity and concentrate on
the numerical implementation for

1 PR
(8) / T NTf Tof Tof) dt

In Subsection 2.1, we found a numerical approximation U = (U?)Y_, of u =
Tif, where U" = (U}'). That is, U is an approximation to T3, f(x;) with
t, = nAt. To implement the integration (8), we use the composite trapezoidal
rule as

At &
/ YT f TF Tif)dt = Z / NI T Tt 503 (T +T)
n=1

in which Ty, := T, ' (T3, f T0,. f T, f).
We denote a matrix W = (W") _, with W" = (U”U”U") . Note that

T&tl can be computed by changing At as (—At) in the RK4 in Subsection
2.1, see Chapter 2 in [12]. Thus, (n — 1)-times of Ty, is needed for W to
get T,,. For the discretization of the linear part, Lf, the fourth order central
difference scheme introduced in Subsection 2.1 is used. Applying these two
approximations above to (7) yields the next iterate f(*+1)

Assuming that w € C and a nontrivial solution f € L? (R) satisfy (4), then

w(f, f) = day(f, f") + <f, / “(Tuf Tf Tuf) d >

where (g, f) fR ) dz. Using the T}’s unitarity and integration by
parts, we obtain the followmg equation which implies w € R and provides
Wk when f*+1) is obtained from (w®), f(F)):

1
o) lfle = a3+ [ [ 171" do it
0

Hereafter, we use the subindex omitted notation ||-|| for the L2-norm to simplify
the notation. Note that our desired w must satisfy the following properties.
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For the one-dimensional problem,

/01/R|th|4 de dt < (/()1/R|th|6 dxdt)g (/01/R|th|2 da;dt)é

< (127 171) 191

The value 127112 in the last inequality was discovered by Hundertmark and
Zharnitsky [14] and by Foschi [9]. Combining this inequality with (9) yields

(10) w <1275 f]1% .

We obtain another estimate for the last term in (9) as

! 4 i ! 3
/O/RITJ\ da dt < 2= 11171

by using an inequality of Sobolev type (see [32] for more details). Then, through

a simple calculation, one can see w < || f||*/(12d.y). Note that this bound is less

sharp (larger upper bound) than the one given in (10) when d., < [|f||?/(12%/4).
The overall Picard iteration stops when it satisfies

(11) [F5) — fEFD e /) fED ] < e < 1,

where || - [|;2 is the discrete I2-norm. Finally, f**+1 is the proposed approxi-
mation to (4).

The two-dimensional case framework and all numerical processes are very
analogous to the one-dimensional case. Only the numerical calculation for 92
needs to be changed to a numerical calculation for Laplacian, V2. There are
also similar known theories regarding the upper bound of w associated with f.
For instance, Hundertmark et al. (see [14]) and Carneiro (see [4]) had shown
respectively

w< | fIP/4  and w < || f]|*/(647 day).

3. Numerical results

In this section, the results of the proposed numerical computations are pre-
sented. These results first justify known theoretical facts mentioned in Section 1
and then show some evidence that can provide possibilities to resolve unknown
or unsolved problems. In particular, the following two dimensional open prob-
lems are of our special interest: the behavior of eigenpairs when d,, — 0 and
the existence of them for the zero average dispersion case.

We use three types of functions as the initial guesses for x := z € R and
x € R*: exp(—[x|*/2), cos(|x|*/16) exp(—|x|), and Y /", agsech (z +by). We
choose different constants (a,,b,,) for the last type initial guess to vary the
number of humps and to control the symmetry. Since our interest lies in find-
ing an eigenpair (w, f) for an arbitrary d,y, > 0, the numerical simulations with
various d,, values have been performed. In the one-dimensional problem, both
the z-mesh size Ax and t-mesh size At are set to 0.05 and 0.001, respectively,
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over the considering domain [—20, 20] x [0, 1]. We perform the iterations until
the tolerance ¢ of relative error (11) becomes sufficiently small. For each itera-
tion, f*) is normalized to avoid obtaining a meaningless approximation close
to zero. Numerical computations for the two dimensional case are conducted
by choosing a = 6 as the radius of the domain and using the same iterative pro-
cess of the one-dimensional case. Note that (wg, fg), (we, fc) and (ws, fs) in the
following subsections indicate that the results when initial guesses are chosen as
exp(—|x|?/2), cos(|x|*/16) exp(—|x]|), and > g1 agsech (z + by ), respectively.

3.1. dsy > 0 case

When d,, > 0, the existence of a weak solution to the problem (4) is well-
known [32]. In addition to the weak solution existence theory, for cases where
f is a minimizer of the corresponding variational problem (5), the fast decay
was guaranteed in [11] and regularity was verified mathematically in [13, 26,
32]. Our numerical solutions show similar fast decaying behavior (see Figures
1-3, 8). Note that symmetric initial guesses lead us to even eigenfunctions,
and non-symmetric initial guesses chosen as a linear combination of hyperbolic
secant functions generate eigenfunctions with axis of symmetry x = r # 0 (see
Figures 1-3, 8). Oscillatory motion has been observed in other literatures as
well (see [19-21]). In our results, the oscillatory behavior of eigenfunctions
is only observed for small d,, which is when d,, < 1072. It is more clearly
shown through the graphs of log(|f|) (see Figure 5). As d,, gets smaller (here
day < 1072), oscillation happens away from = = 0, as seen in Figure 4-(A), and
if d,y is small enough (d,, < 1079), then eigenfunctions have little difference, as
seen in Figure 4-(B). Nonlinearity is expected to be a cause of such oscillation.

*) ®) R
FIGURE 1. |f,| graphs (A) day = 1 (B) dav = 0.1 (C) Expo-

nential decay of solutions

As briefly addressed in the introduction, if (w, f) is an eigenpair correspond-
ing to some dyy, then one can easily prove that (cw,+/cf) is an eigenpair for
cd,y for any positive constant ¢ such as

wal/ef)=edn VA/e) = [ T (TP T o)
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FIGURE 2. |f.| graphs (A) day = 1072 (B) duy = 107%
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FIGURE 3. |fs|, day = 107* with a non-symmetric initial guess
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FIGURE 5. Oscillation of tail (A) da, = 1072,1074,107% (B)
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1
(12) _ cﬁ{wf ~anvs - [ Tt‘l(IthIQth)dt} .
0

We confirm the fact above through numerical tests as well. For example, for
day = 1073, we obtain @ = 0.020506 and f with the Gaussian initial guess.
Then, if we run the numerical simulation again with d,, = 1072 and LZ-
norm fixed as v/10-time || f||z2 in the normalization, then the results are w =
0.20506 ~ 10& and f with ||f — v10f| > < 107°.

In the two-dimensional problem, Kunze found a sequence {u;} of radially
symmetric minimizers with the same L?-norm. Our two-dimensional numerical
test result also yields radial symmetry solutions, which supports Kunze’s result;
see Figure 6.

/ cross-sectional image when x=0

FIGURE 6. Resulting | f,| for the 2D case when d,, = 107*

3.2. dsy = 0 case

The existence of a weak solution of the problem (4) in this case for one
dimension was proved by Kunze, and the exponential decay of weak solutions
was shown by Erdogan et al. in [7]. The results of our numerical simulations
verify these mathematical theories. Moreover, our proposed numerical scheme
allows us to update (w, f) simultaneously without fixing either w or f in an
iterative manner (see Table 1 and Figure 8).

TABLE 1. Computed w in 1D

day | 1071 10-2 10-* 108 0

wg | 0.0027 0.0148  0.0211  0.0211  0.0211
we | 0.0027  0.0148  0.0211  0.0211  0.0211
ws | 0.0027  0.0148  0.0211  0.0211  0.0211

In [26], Stanislavova verified the nonexistence of minimizers in the two-
dimensional case by proving that (5) with d,, = 0 cannot be achieved by any
f. This result is very important to understand the equation (4) when d,, = 0,
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FIGURE 7. (A) wy (B) w. and (C) ws values as dgy — 0

however, it does not imply that (4) has only the trivial solution. Through our

computation, we found that there can be a nontrivial solution to (4), which
has radial symmetry and fast decay when it is not confined to be a minimizer,

as in Figure 9.

(B)

(A)

fo and fe when doy = 0 (A) [fy| (B) [fel

FIGURE 8.
cross-sectional image when x=0

FIGURE 9. |f,| for the 2D case when dn, =0

3.3. dsv — 0 observation
to see if the characteristics associated to (w, f) with d,, > 0 continuously

One of our objectives is to observe the behavior of the eigenpairs as d,, — 0
converge to the ones with d,, = 0. For each initial guess, we select various day
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values that are approaching 0 and construct a sequence {d.} with d% — 0 as
m — 0. Let (W, fm) be an eigenpair corresponding to d1?, for each m € N and
let (w, f) be an eigenpair for d,, = 0. As long as we obtain f,,, for m € N and f
from the same initial guess, the result shows that w,, — w in R (see Table 1 and
Figure 7) and f,, — f in L%, as m — oo (see Figure 4-(B) and 5-(B)). Kunze
mathematically proved a similar behavior though he only addressed a one-
dimensional constrained minimization problem [16]. Based on the numerical
results, we may claim that this converging behavior need not be restricted on
a constrained minimization problem. To the best of our knowledge, there are
no theoretical proofs that show this continuous behavior with d,, approaching
0 in two dimensions. In this paper, we present the numerical evidence that
Kunze’s conclusion in [16] can be true in the two dimensional problem as well.

4. Conclusion

The presented numerical results support important mathematical theories
for various d,, that had been known for years. Omn the other hand, some
of our numerical solutions diverged from previous mathematically described
characteristics that are considered in the problems addressing minimizers as
our simulations are not constrained to deal with minimizers. For d,, > 0, our
computation proves that there can be infinitely many eigenpairs corresponding
to each d,,. When d,, is fixed, w is found as a unique value and the corre-
sponding eigenfunctions have only different axis of symmetry depending on the
symmetry of initial guesses. For the two-dimensional problem, an observation
through numerical simulations leads us to interesting findings that imply the
possible existence of a solution to the d,, = 0 case, which has not been theoret-
ically verified previously. Because it turned out that there are no minimizers of
the same problem by Stanislavova [26], we believe that this result can be very
meaningful for some applications. The result of the d,, — 0 case intimates
that there can be a way to construct a sequence of eigenpairs converging to
an eigenpair for the d,, = 0 case, even if the problem was solved in a varia-
tional problem (5) in [16]. It can be also valid for the two-dimensional case
considering the results of our two-dimensional simulations. If we combine this
convergent behavior with the result of (12), we can also claim that there exists
a sequence of eigenpairs convergent to (w, f) where (w, f) is an arbitrary eigen-
pair corresponding to d,y = 0. Hence, we conclude that there can be many
challenging mathematical problems related to (1) if one does not restrict them
to minimization problems.
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