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ON GEOMETRIC PROPERTIES OF THE MITTAG-LEFFLER

AND WRIGHT FUNCTIONS

Sourav Das and Khaled Mehrez

Abstract. The main focus of the present paper is to present new set of

sufficient conditions so that the normalized form of the Mittag-Leffler and
Wright functions have certain geometric properties like close-to-convexity,

univalency, convexity and starlikeness inside the unit disk. Interesting
consequences and examples are derived to support that these results are

better than the existing ones and improve several results available in the

literature.

1. Introduction

1.1. Background and motivation

Mittag-Leffler and Wright functions are important functions of fractional
calculus. These functions occur in the solution of fractional order differential
equations or fractional order integral equations. These functions play vital role
in many branches of science and engineering. For example, these functions have
been successfully applied in fractional modeling [23].

Mittag-Leffler function is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z, α, β ∈ C, <(α) > 0,(1.1)

which was introduced by Mittag-Leffler [13, 14] in 1903 for the case β = 1.
Later in 1933, Wright [25] introduced the Wright function, defined as

Wα,β(z) =

∞∑
k=0

zk

k!Γ(αk + β)
, β, z ∈ C, α > −1.(1.2)
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In particular, when α = 1 and β = µ+1, we have the Bessel function [2] defined
as follows:

Jµ(z) =
(z

2

)µ
W1,µ+1

(
−z

2

4

)
=

∞∑
k=0

(−1)k(z/2)2k+µ

k!Γ(k + µ+ 1)
.(1.3)

In 1935, Wright introduced the Fox-Wright function pΨq[z] with p numerator
and q denominator parameters, defined by [6]

(1.4) pΨq

[(a1,A1),...,(ap,Ap)

(b1,B1),...,(bq,Bq)

∣∣∣z] = pΨq

[(ap,Ap)

(bq,Bq)

∣∣∣z] =

∞∑
k=0

∏p
i=1 Γ(ai + kAi)∏q
j=1 Γ(bj + kBj)

zk

k!
,

(
ai, bj ∈ C, and Ai, Bj ∈ R+ (i = 1, . . . , p, j = 1, . . . , q)

)
.

The series (1.4) converges absolutely and uniformly for all bounded |z|, z ∈ C
when

ε = 1 +

q∑
j=1

Bj −
p∑
j=1

Aj > 0.

It can be noted from (1.1), (1.2) and (1.4) that Fox-Wright function pΨq[z]
generalizes both Eα,β(z) and Wα,β(z) and other special functions like Bessel
function, hypergeometric function etc. In [19, Theorem 4], Pogány and Srivas-
tava established the following inequality:

(1.5) ψ0e
ψ1ψ

−1
0 |z| ≤ pΨq

[(ap,Ap)

(bq,Bq)

∣∣∣z] ≤ ψ0 − (1− e|z|)ψ1

for all z ∈ R and for all pΨq[z] satisfying ψ1 > ψ2 and ψ2
1 < ψ0ψ2, where

ψk =

∏p
j=1 Γ(aj + kAj)∏q
j=1 Γ(bj + kBj)

, k = 0, 1, 2.

Problems for investing geometric properties including starlikeness, closed-
to-convexity, convexity or univalency of family of analytic functions in the unit
disk D = {z : |z| < 1}, involving special functions have always been attracted
by several researchers [1, 5, 7, 8, 11,12,20].

Geometric properties of normalized form of Wα,β(z) were discussed by Pra-
japat in [20]. Geometric properties of normalized form of Eα,β(z) were studied
by Bansal and Prajapat in [1]. Recently, in [17], geometric properties of nor-
malized form of Eα,β(z) were studied, which improve the results of [1]. Baricz,
Toklu and Kadioğlu [4] derived the radii of starlikeness and convexity of nor-
malized form of Wα,β(z). Radius of starlikeness and Hardy space of Eα,β(z)
were discussed in [21]. Recently, Baricz and Prajapati [3] found the radii of
starlikeness and convexity of generalized Mittag-Leffler functions. The above
results inspire us to study the geometric properties of the Mittag-Leffler and
Wright functions and improve the results available in the literature.
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1.2. Main contributions

The main contributions of this paper are listed in the following points.

• Obtain sufficient conditions so that normalized form of Eα,β(z) has
some geometric properties like starlikeness, close-to-convexity (univa-
lency) and convexity.

• Derive sufficient conditions so that normalized form of Wα,β(z) has
certain geometric properties like starlikeness, close-to-convexity (uni-
valency) and convexity.

• Show that obtained results improve the results available in the litera-
ture.

1.3. Outlines

The paper is organized as follows. In Section 2, we recall some well-known
definitions and results, which will be useful to derive the main results. Section 3
is devoted to discuss the geometric properties of the normalized form of Eα,β(z).
In this section we also show that obtained results improve several results for
Eα,β(z) available in the literature. In Section 4, geometric properties of the
normalized form of Wα,β(z) are studied. It is also verified that obtained results
improve several results for Wα,β(z) available in the literature.

2. Preliminaries

Let H denote the class of all analytic functions inside the unit disk D =
{z : |z| < 1}. Suppose that A is the class of all functions f ∈ H which are
normalized by f(0) = f ′(0) − 1 = 0 such that f(z) = z +

∑∞
k=2 akz

k for all
z ∈ D.

A function f ∈ A is said to be a starlike function (with respect to the origin
0) in D, if f is univalent in D and f(D) is a star-like domain with respect
to 0 in C. This class of starlike functions is denoted by S∗. The analytic
characterization of S∗ is given [5] below:

<
(
zf ′(z)

f(z)

)
> 0 ∀z ∈ D ⇐⇒ f ∈ S∗.

If f(z) is a univalent function in D and f(D) is a convex domain in C, then
f ∈ A is said to be a convex function in D. We denote this class of convex
functions by K. This class can be analytically characterized as follows:

<
(

1 +
zf ′′(z)

f ′(z)

)
> 0, ∀z ∈ D ⇐⇒ f ∈ K.

It is well-known that zf ′ is starlike if and only if f ∈ A is convex. A function
f(z) ∈ A is said to be close-to-convex in D if ∃ a starlike function g(z) in D
such that <

(
zf ′(z)
g(z)

)
> 0 for all z ∈ D. The class of all close-to-convex functions

is denoted by C. It can be easily verified that K ⊂ S∗ ⊂ C. It is well-known
that every close-to-convex function in D is also univalent in D.
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A function f ∈ A is said to be uniformly convex (starlike) if for every
circular arc γ contained in D with center ζ ∈ D the image arc f(γ) is convex
(starlike with respect to the image f(ζ)). The class of all uniformly convex
(starlike) functions is denoted by UCV (UST ) [24]. In [9,10], A. W. Goodman
introduced these classes. Later, F. Rønning [24] introduced a new class of
starlike functions Sp defined by

Sp := {f : f(z) = zF ′(z), F ∈ UCV }.

For further details on geometric properties of analytic functions we refer to
[2, 5, 7, 8, 11, 12] and references cited therein. Now, we recall some well-known
lemmas, which will be helpful to prove the main results.

Lemma 2.1 ([11]). Let f ∈ A and |(f(z)/z)− 1| < 1 for each z ∈ D. Then f
is univalent and starlike in D 1

2
= {z : |z| < 1

2}.

Lemma 2.2 ([11]). If f ∈ A and |f ′(z) − 1| < 1 for each z ∈ D, then f is
convex in D 1

2
=
{
z ∈ C, |z| < 1

2

}
.

Lemma 2.3 ([15]). Let f(z) ∈ A and |f ′(z)− 1| < 2/
√

5 ∀ z ∈ D. Then f(z)
is a starlike function in D.

Lemma 2.4 ([18]). Let f(z) = z +
∑∞
k=2Akz

k. If 1 ≤ 2A2 ≤ · · · ≤ nAn ≤
(n+ 1)An+1 ≤ · · · ≤ 2, or 1 ≥ 2A2 ≥ · · · ≥ nAn ≥ (n+ 1)An+1 ≥ · · · ≥ 0, then
f is close-to-convex with respect to − log(1− z).

Lemma 2.5 ([18]). Let f(z) = z +
∑∞
k=2A2k−1z

2k−1 be analytic in D. If
1 ≥ 3A3 ≥ · · · ≥ (2k − 1)A2k−1 ≥ · · · ≥ 0 or 1 ≤ 3A3 ≤ · · · ≤ (2k − 1)A2k−1 ≤
· · · ≤ 2, then f is univalent in D.

Lemma 2.6 ([22]). Let f(z) ∈ A.

(i) If
∣∣∣ zf ′′(z)f ′(z)

∣∣∣ < 1
2 , then f(z) ∈ UCV .

(ii) If
∣∣∣ zf ′(z)f(z) − 1

∣∣∣ < 1
2 , then f(z) ∈ Sp.

3. Geometric properties of the Mittag-Leffler function

In this section, we discuss the geometric properties of the normalized Mittag-
Leffler function defined as

(3.1) Eα,β(z) = Γ(β)zEα,β(z), z ∈ D.

Theorem 3.1. Let α, β > 0 be real numbers satisfying the following conditions:

(H1) :


(i) 3Γ(2α+ β) < Γ(3α+ β),
(ii) 2Γ(α+ β)Γ(3α+ β) < 3Γ2(2α+ β),

(iii) 2Γ(β)
Γ(α+β) + 3(e−1)Γ(β)

Γ(2α+β) < 1.

Then the function Eα,β(z) is starlike in D.
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Proof. Let

Eα,β(z) =
zE′α,β(z)

Eα,β(z)
, z ∈ D.

Then clearly the function Eα,β(z) is analytic in D and Eα,β(0) = 1. To show
the desired result, it suffices to prove that < (Eα,β(z)) > 0 for all z ∈ D. For
this, it is enough to show that

|Eα,β(z)− 1| =
∣∣∣∣zE′α,β(z)

Eα,β(z)
− 1

∣∣∣∣ =

∣∣∣E′α,β(z)− Eα,β(z)
z

∣∣∣∣∣∣Eα,β(z)
z

∣∣∣ < 1 for all z ∈ D.

From (3.1), we get

E′α,β(z)− Eα,β(z)

z
=

∞∑
k=1

kΓ(β)zk

Γ(αk + β)

=

∞∑
k=0

Γ(β)Γ(k + 2)

Γ(αk + α+ β)

zk+1

k!

= zΓ(β)1Ψ1

[
(2,1)
(α+β,α)

∣∣z] .
Hence,

(3.2)

∣∣∣∣E′α,β(z)− Eα,β(z)

z

∣∣∣∣ < Γ(β)1Ψ1

[
(2,1)
(α+β,α)

∣∣1] , z ∈ D.
In our case,

ψ0 =
1

Γ(α+ β)
, ψ1 =

2

Γ(2α+ β)
, and ψ2 =

6

Γ(3α+ β)
.

It is easy to see that the conditions “(H1) : (i), (ii)” are equivalent to ψ2 < ψ1

and ψ2
1 < ψ0ψ2. Therefore, by (1.5), we obtain

(3.3) 1Ψ1

[
(2,1)
(α+β,α)

∣∣1] ≤ 1

Γ(α+ β)
+

2(e− 1)

Γ(2α+ β)
.

In addition, using the triangle inequality |z1 + z2| ≥ ||z1| − |z2||, we have∣∣∣∣Eα,β(z)

z

∣∣∣∣ ≥ 1−

∣∣∣∣∣
∞∑
k=1

Γ(β)

Γ(αk + β)
zk

∣∣∣∣∣
≥ 1−

∞∑
k=1

Γ(β)

Γ(αk + β)
= 1− Γ(β) 1Ψ1

[
(1,1)
(α+β,α)

∣∣1] .
However, by applying the inequality (1.5), we have

1Ψ1

[
(1,1)
(α+β,α)

∣∣1] ≤ 1

Γ(α+ β)
+

(e− 1)

Γ(2α+ β)
,
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where 2Γ(2α+β) < Γ(3α+β) and Γ(α+β)Γ(3α+β) < 2Γ2(2α+β). Therefore,

(3.4)

∣∣∣∣Eα,β(z)

z

∣∣∣∣ ≥ 1− Γ(β)

Γ(α+ β)
− (e− 1)Γ(β)

Γ(2α+ β)
> 0 for all z ∈ D.

Using (3.2), (3.3) and (3.4), we have∣∣∣∣zE′α,β(z)

Eα,β(z)
− 1

∣∣∣∣ =

∣∣∣E′α,β(z)− Eα,β(z)
z

∣∣∣∣∣∣Eα,β(z)
z

∣∣∣
<

(
Γ(β)

Γ(α+ β)
+

2(e− 1)Γ(β)

Γ(2α+ β)

)(
1− Γ(β)

Γ(α+ β)
− (e− 1)Γ(β)

Γ(2α+ β)

)−1

< 1

for all z ∈ D, under the given hypothesis. �

Putting α = 1 in Theorem 3.1, we have the following result:

Corollary 3.2. Let β > 3.22118. Then the function E1,β is starlike in D.

Remark 3.3. Setting β = 5 in Theorem 3.1, we obtain α ∈ [0.769, 1.80]. More-
over, we can verify that for each positive integer β = n ≥ 3, there exists
αn ∈ (0, 1] such that Eαn,β(z) is starlike in D. In literature, various results
related to starlikeness of Eα,β(z) (see [1, 17]) is available with the condition
that α ≥ 1. Hence, Theorem 3.1 improves the results available in [1, 17].

Using the inequality [17, Equation 5]∣∣∣∣Eα,β(z)

z

∣∣∣∣ ≥ β2 − β − 1

β2
for α ≥ 1 and β > (1 +

√
5)/2,

and proceeding similarly as previous theorem, following result can be estab-
lished.

Theorem 3.4. Suppose that α ≥ 1 and β > (1 +
√

5)/2 are real numbers and
the following conditions hold:

(H ′1) :


(i) 3Γ(2α+ β) < Γ(3α+ β),
(ii) 2Γ(α+ β)Γ(3α+ β) < 3Γ2(2α+ β),

(iii) β2

(β2−β−1)

(
Γ(β)

Γ(α+β) + 2(e−1)Γ(β)
Γ(2α+β)

)
< 1.

Then the function Eα,β(z) is starlike in D.

Setting α = 1 in Theorem 3.4, we have the following result:

Corollary 3.5. Let β > 3.14658. Then the function E1,β is starlike in D.

Remark 3.6. From [1, Example 2.1], we can see that E1,β(z) is starlike in D
if β ≥ 4. Further, according to [1, Theorem 2.2], E1,β(z) is starlike in D if

β ≥ 3+
√

17
2 ≈ 3.56155. Moreover, [17, Theorem 6] indicates that E1,β(z) is

starlike in D if β ≥ 3.214319744. Hence, Corollary 3.5 provides results for
E1,β(z), better than the results available in [1, Theorem 2.1, Theorem 2.2] and
[17, Theorem 6].
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Theorem 3.7. Suppose that the following conditions hold:

(H2) :


(i) 2Γ(2α+ β) < Γ(3α+ β),
(ii) Γ(α+ β)Γ(3α+ β) < 2Γ2(2α+ β),

(iii) Γ(β)
Γ(α+β) + (e−1)Γ(β)

Γ(2α+β) < 1.

Then the function Eα,β(z) is starlike in D 1
2
.

Proof. A simple computation leads to

Eα,β(z)

z
− 1 = zΓ(β) 1Ψ1

[
(1,1)
(α+β,α)

∣∣z] .
Therefore,

(3.5)

∣∣∣∣Eα,β(z)

z
− 1

∣∣∣∣ < Γ(β) 1Ψ1

[
(1,1)
(α+β,α)

∣∣1]
for all z ∈ D. In this cases, we have

ψ0 =
1

Γ(α+ β)
, ψ1 =

1

Γ(2α+ β)
, and ψ2 =

2

Γ(3α+ β)
.

We observe that the conditions on the parameters “(H2) : (i), (ii)” is equivalent
to ψ2 < ψ1 and ψ2

1 < ψ0ψ2. Therefore, by (1.5) we have

(3.6) 1Ψ1

[
(1,1)
(α+β,α)

∣∣1] ≤ Γ(β)

Γ(α+ β)
+

Γ(β)(e− 1)

Γ(2α+ β)
.

Now, keeping (3.5), (3.6) and “(H2) : (iii)” in mind, we obtain∣∣∣∣Eα,β(z)

z
− 1

∣∣∣∣ < 1, z ∈ D.

By applying Lemma 2.1, we get the required result. �

Corollary 3.8. If β >
√
e ≈ 1.64872, then the function E1,β(z) is starlike in

D 1
2
.

Example 3.9. The following functions are starlike in D1/2:

E1,2(z) = ez − 1,

E1, 52
(z) =

3

4

(√
πezerf(

√
z)− 2

√
z√

z

)
,

E1,3(z) =
2 (ez − z − 1)

z
,

E1, 72
(z) =

5

8

(
3
√
πezerf(

√
z)

z3/2
− 6

z
− 4

)
,

E1,4(z) =
6 (ez − 1− z)− 3z2

z2
.
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Remark 3.10. It can be noted that Corollary 3.8 provides results sharper than
Corollary 3.5. Let us now consider the following functions f1(x), g1(x) and
h1(x), defined by

f1(x) = Γ(3x+ 2)− 2Γ(2x+ 2),

g1(x) = 2Γ2(2x+ 2)− Γ(x+ 2)Γ(3x+ 2),

h1(x) = 1− 1

Γ(x+ 2)
− (e− 1)

Γ(2x+ 2)
.

The above functions are positive for all x ∈ [0.915, 1.897]. Figure 1 verifies our
claim. Theorem 3.7 indicates that the function Eα,2(z) is starlike in D1/2, if
α ∈ [0.915, 1.897]. Similarly, using Theorem 3.7, we can verify that Eα3,3(z)
and Eα4,4(z) are starlike in D1/2 if α3 ∈ [0.59, 2.156] and α4 ∈ [0.482, 2.376]
respectively. Further, one can verify that for each positive integer β = n ≥ 3,
there exists αn ∈ (0, 1] such that Eαn,β(z) is starlike in D1/2. In literature,
various results related to starlikeness of Eα,β(z) in D1/2 is available with the
condition that α ≥ 1. For example, see [1, Theorem 2.4]. It is important to
note that Theorem 3.7 discusses the cases when 0 < α ≤ 1. Hence, Theorem
3.7 improves the results available in [1].

f1(x)

g1(x)

100h1(x)

1.0 1.2 1.4 1.6 1.8

0

200

400

600

800

Figure 1. Graphs of f1(x), g1(x) and 100h1(x) for x ∈
[0.915, 1.897].

Theorem 3.11. Suppose that the following conditions hold:

(H3) :


(i) 8Γ(2α+ β) < 3Γ(3α+ β),
(ii) 9Γ(α+ β)Γ(3α+ β) < 16Γ2(2α+ β),

(iii) 2Γ(β)
Γ(α+β) + 3(e−1)Γ(β)

Γ(2α+β) < M.

(a) If M = 1, then the function Eα,β(z) is convex in D 1
2
.

(b) If M = 2√
5

, then the function Eα,β(z) is starlike in D.
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Proof. By using (3.1), we have

E′α,β(z)− 1 =

∞∑
k=0

(k + 2)Γ(β)zk+1

Γ(αk + α+ β)

=

∞∑
k=0

Γ(β)Γ(k + 1)Γ(k + 3)

Γ(k + 2)Γ(αk + α+ β)

zk+1

k!

= z Γ(β) 2Ψ2

[
(1,1),(3,1)
(2,1),(α+β,α)

∣∣z] .
(3.7)

This implies that

(3.8)
∣∣E′α,β(z)− 1

∣∣ < Γ(β) 2Ψ2

[
(1,1),(3,1)
(2,1),(α+β,α)

∣∣1] , z ∈ D.

Moreover, we observe that the conditions “(H3) : (i), (ii)” are equivalent to the
inequalities ψ2 < ψ1 and ψ2

1 < ψ0ψ2, where

ψ0 =
2

Γ(α+ β)
, ψ1 =

3

Γ(2α+ β)
, and ψ2 =

8

Γ(3α+ β)
.

Using (1.5), we obtain

2Ψ2

[
(1,1),(3,1)
(2,1),(α+β,α)

∣∣1] < 2

Γ(α+ β)
+

3(e− 1)

Γ(2α+ β)
.

Combining the above inequality, (3.8) and “(H3) : (iii)”, we have∣∣E′α,β(z)− 1
∣∣ < M, z ∈ D.

Finally, using Lemma 2.2 and Lemma 2.3, the desired result can be established.
�

Corollary 3.12. If β > 1
2 +
√

3e− 3/4 ≈ 3.22118457393, the function E1,β(z)
is convex in D 1

2
.

Remark 3.13. It can be noted from [1, Theorem 2.4] and [17, Theorem 7] that

E1,β(z) is convex in D 1
2

if β ≥ 3+
√

17
2 ≈ 3.561552813. Hence, the above result

improves the results for E1,β(z), available in [1, 17].

Example 3.14. The following functions are convex in D 1
2
:

E1, 72
(z) =

5

8

(
3
√
πezerf(

√
z)

z3/2
− 6

z
− 4

)
,

E1,4(z) =
(6 (ez − 1)− 3z)

z
,

E1, 92
(z) =

105
√
πezerf(

√
z)

16z5/2
− 7(4z2 + 10z + 15)

8z2
,

E1,5(z) = −
4
(
z3 + 3z2 + 6z − 6ez + 6

)
z3

.
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Remark 3.15. Consider the following functions defined as

f2(x) = 3Γ(3x+ 2)− 8Γ(2x+ 2),

g2(x) = 16Γ2(2x+ 2)− 9Γ(x+ 2)Γ(3x+ 2),

h2(x) = 1− 2

Γ(x+ 2)
− 3(e− 1)

Γ(2x+ 2)
.

The above functions are positive for any x ∈ [1.3749, 1.6472]. Figure 2 verifies
our claim. Hence, Eα,2(z) is convex on D 1

2
if α ∈ [1.3749, 1.6472]. Similarly,

we can prove that Eα8,8(z) is convex on D 1
2

if α8 ∈ [0.61, 2.71]. It can be

verified that for each positive integer β = n ≥ 8, there exists αn ∈ (0, 1) such
that Eαn,β(z) is convex on D 1

2
. Hence, Theorem 3.11 is useful to discus the

convexity of Eα,β(z) on D 1
2

when 0 < α < 1. In [1, 17], sufficient condition

for convexity of Eα,β(z) is given as α ≥ 1 and β ≥ 3.561552813. Therefore,
Theorem 3.11 improves the results in [1, 17].

f2(x)

g2(x)

1000h2(x)

1.40 1.45 1.50 1.55 1.60 1.65

0

500

1000

1500

Figure 2. Graphs of f2(x), g2(x) and 1000h2(x) for x ∈
[1.3749, 1.6472].

Theorem 3.16. Suppose that α and β satisfy the hypothesis H3 (with M = 1)
of Theorem 3.11. In addition, they also satisfy the following conditions:

(H4) :


(i) 4Γ(2α+ β) < Γ(3α+ β),
(ii) 3Γ(α+ β)Γ(3α+ β) < 4Γ2(2α+ β),

(iii) 4Γ(β)
Γ(α+β) + 9(e−1)Γ(β)

Γ(2α+β) < 1.

Then Eα,β(z) is convex in D.

Proof. We set

Λα,β(z) =
zE′′α,β(z)

E′α,β(z)
, z ∈ D.
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To prove that Eα,β(z) is convex on D, it is enough to prove that |Λα,β(z)| < 1
for all z ∈ D. A simple computation gives us

(3.9) E′′α,β(z) = Γ(β) 1Ψ1

[
(3,1)

(α+β,α)

∣∣z] , z ∈ D,
and consequently

(3.10)
∣∣E′′α,β(z)

∣∣ < Γ(β) 1Ψ1

[
(3,1)

(α+β,α)

∣∣1] , z ∈ D.
Under the given conditions and the inequalities, we obtain

(3.11) 1Ψ1

[
(3,1)

(α+β,α)

∣∣1] ≤ 2

Γ(α+ β)
+

6(e− 1)

Γ(2α+ β)
.

Combining (3.10) and (3.11), we have

(3.12)
∣∣E′′α,β(z)

∣∣ < 2Γ(β)

Γ(α+ β)
+

6(e− 1)Γ(β)

Γ(2α+ β)
, z ∈ D.

Again, we have

∣∣E′α,β(z)
∣∣ =

∣∣∣∣∣1 +

∞∑
k=1

(k + 1)Γ(β)

Γ(αk + β)
zk

∣∣∣∣∣
> 1−

∞∑
k=1

(k + 1)Γ(β)

Γ(αk + β)

= 1−
∞∑
k=0

(k + 2)Γ(β)

Γ(αk + α+ β)

= 1− Γ(β)

∞∑
k=0

Γ(k + 1)Γ(k + 3)

Γ(k + 2)Γ(αk + α+ β)

(1)k

k!

= 1− Γ(β)2Ψ2

[
(1,1),(3,1)
(2,1),(α+β,α)

∣∣1] .
Since α, β satisfy H3 (with M = 1), using the same technique as in Theorem
3.11, we obtain ∣∣E′α,β(z)

∣∣ > 1− 2Γ(β)

Γ(α+ β)
− 3(e− 1)Γ(β)

Γ(2α+ β)
> 0.(3.13)

Combining (3.12) and (3.13), we have∣∣∣∣∣zE′′α,β(z)

E′α,β(z)

∣∣∣∣∣ <
2Γ(β)

Γ(α+β) + 6(e−1)Γ(β)
Γ(2α+β)

1− 2Γ(β)
Γ(α+β) −

3(e−1)Γ(β)
Γ(2α+β)

< 1,

under the given hypothesis. The proof is now completed. �
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Corollary 3.17. Suppose that α and β satisfy the hypothesis H3 (with M = 1)
of Theorem 3.11. In addition, they also satisfy the following conditions:

(H ′4) :


(i) 4Γ(2α+ β) < Γ(3α+ β),
(ii) 3Γ(α+ β)Γ(3α+ β) < 4Γ2(2α+ β),

(iii) 3Γ(β)
Γ(α+β) + 15

2
(e−1)Γ(β)
Γ(2α+β) < 1/2.

Then Eα,β(z) ∈ UCV for all z ∈ D.

Remark 3.18. Consider the following functions defined as

f3(x) = Γ(3x+ 8)− 4Γ(2x+ 8),

g3(x) = 4Γ2(2x+ 8)− 3Γ(x+ 8)Γ(3x+ 8),

h3(x) = 1− 4Γ(8)

Γ(x+ 8)
− 9(e− 1)Γ(8)

Γ(2x+ 8)
.

Using mathematical software, we can verify that the above functions are posi-
tive for any x ∈ [0.885, 1.78]. From Remark 3.15, we see that Eα,8(z) is convex
in D 1

2
if α8 ∈ [0.61, 2.71]. Hence, if α ∈ [0.885, 1.78] and β = 8, then the con-

ditions (H3) and (H4) are satisfied. Consequently, Eα,8(z) is convex in D if
α ∈ [0.885, 1.78]. It can be verified that for each positive integer β = n ≥ 8,
there exists αn ∈ (0, 1) such that Eαn,β(z) is convex in D. Hence, Theorem 3.16
is useful to discuss the convexity of Eα,β(z) on D when 0 < α ≤ 1. Recently,
in [17], it is proved that Eα,β(z) is convex in D if α ≥ 1 and β ≥ 3.56155281.
Therefore, Theorem 3.16 improves the results in [17].

Remark 3.19. Using Corollary 3.17 and proceeding similarly as Remark 3.18,
we can verify the following statements:

(i) E1.13,β(z) ∈ UCV if β ≥ 6.67,
(ii) Eα,11(z) ∈ UCV if α ∈ [0.9877, 2],
(iii) for each positive integer β = n ≥ 11, there exists αn ∈ (0, 1) such that

Eαn,β(z) ∈ UCV .

In [16, Theorem 2.6], it is proved that Eα,β(z) ∈ UCV if α ≥ 1 and β ≥
9.1112597744. Hence, Corollary 3.17 improves the results (especially Theorem
2.6) of [16].

Theorem 3.20. Let α, β ≥ 1 be such that the following conditions are satisfied:

(H5) :


(i) 3Γ(β + 2) < Γ(β + 3),
(ii) 2Γ(β + 1)Γ(β + 3) < 3Γ2(β + 2),

(iii) 2
β + 3(e−1)

β(β+1) < 1.

Then the function Eα,β(z) is close-to-convex with respect to the starlike function
E1,β(z).
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Proof. From Theorem 3.1, it can be easily verified that E1,β(z) is a starlike
function in D under the given hypothesis. A simple computation gives∣∣∣∣E′α,β(z)− E1,β(z)

z

∣∣∣∣ < ∞∑
k=1

∣∣∣∣ (k + 1)Γ(β)

Γ(kα+ β)
− Γ(β)

Γ(k + β)

∣∣∣∣
≤
∞∑
k=1

kΓ(β)

Γ(k + β)
=

∞∑
k=0

(k + 1)Γ(β)

Γ(k + β + 1)

= Γ(β)

∞∑
k=0

Γ(k + 2)Γ(β)

k!Γ(k + β + 1)

= Γ(β)1Ψ1

[
(2,1)
(β+1,1)

∣∣1] .

(3.14)

In our case,

ψ0 =
1

Γ(β + 1)
, ψ1 =

2

Γ(β + 2)
and ψ2 =

6

Γ(β + 3)
.

It can be easily verified that the conditions “(H5) : (i), (ii)” are equivalent to
ψ2 < ψ1 and ψ2

1 < ψ0ψ2. Therefore, using (1.5) and (3.14), we obtain∣∣∣∣E′α,β(z)− E1,β(z)

z

∣∣∣∣ < 1

β
+

2(e− 1)

β(β + 1)
.(3.15)

Again, we have∣∣∣∣E1,β(z)

z

∣∣∣∣ ≥ 1−
∞∑
k=1

Γ(β)

Γ(k + β)
= 1− Γ(β)

∞∑
k=0

Γ(k + 1)

k!Γ(k + β)

= 1− Γ(β)1Ψ1

[
(1,1)
(β+1,1)

∣∣1] .
In this case,

ψ′0 =
1

Γ(β + 1)
, ψ′1 =

2

Γ(β + 2)
and ψ′2 =

6

Γ(β + 3)
,

which satisfy ψ′2 < ψ′1 and ψ′1
2
< ψ′0ψ

′
2 under the hypothesis “(H5) : (i), (ii)”.

Therefore, using (1.5), we have∣∣∣∣E1,β(z)

z

∣∣∣∣ > 1−
(

1

β
+

(e− 1)

β(β + 1)

)
.(3.16)

Combining (3.15) and (3.16), we obtain∣∣∣∣zE′α,β(z)

E1,β(z)
− 1

∣∣∣∣ =

∣∣∣∣∣E′α,β(z)− E1,β(z)
z

E1,β(z)
z

∣∣∣∣∣ <
1
β + 2(e−1)

β(β+1)

1−
(

1
β + (e−1)

β(β+1)

) < 1,

under the hypothesis “(H5) : (iii)”. Hence, <
(
zE′α,β(z)

E1,β(z)

)
> 0, which completes

the proof. �

The above theorem can be simplified as follows:
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Corollary 3.21. If α ≥ 1 and β ≥ 3.23, then the function Eα,β(z) is close-to-
convex with respect to the starlike function E1,β(z).

Remark 3.22. In [1], it is proved that Eα,β(z) is close-to-convex with respect

to E1,β(z) if α ≥ 1 and β ≥ (3 +
√

17)/2 ≈ 3.56155. Hence, Theorem 3.20
improves the results in [1].

4. Geometric properties of the Wright function

In this section, we discuss the geometric properties of the normalized Wright
function defined as

Wα,β(z) = zΓ(β)Wα,β(z) =

∞∑
k=0

Γ(β)zk+1

k!Γ(αk + β)
.(4.1)

Similarly, using (1.3) and (4.1), we have the normalized Bessel function defined
as follows:

Jµ(z) = W1,µ+1(−z) = Γ(µ+ 1)z1−µ/2Jµ(2
√
z).(4.2)

Using the similar technique as in Section 3, following results can be established.

Theorem 4.1. Suppose that the following conditions hold:

(H6) :


(i) 2Γ(2α+ β) < 3Γ(3α+ β),
(ii) 3Γ(α+ β)Γ(3α+ β) < 4Γ2(2α+ β),

(iii) Γ(β)
Γ(α+β) + (e−1)Γ(β)

2Γ(2α+β) < 1.

Then the function Wα,β(z) is starlike in D 1
2
.

Corollary 4.2. W1,β(z) is starlike in D 1
2

if β > 2.

Example 4.3. Jµ(z) is starlike in D 1
2

if µ > 1.

Remark 4.4. Setting β = 2 in H6, we have α ∈ [0.645, 0.999]. Therefore,
Wα,2(z) is starlike in D 1

2
if α ∈ [0.645, 0.999]. Hence, Theorem 4.1 includes

the case for 0 < α < 1. In [20], it is proved that Wα,β(z) is starlike in D 1
2

if

α ≥ 1 and β ≥ (1+
√

5)/2. Therefore, Theorem 4.1 improves the results of [20].

Theorem 4.5. Under the following conditions

(H7) :


(i) 8Γ(2α+ β) < 9Γ(3α+ β),
(ii) 27Γ(α+ β)Γ(3α+ β) < 32Γ2(2α+ β),

(iii) 2Γ(β)
Γ(α+β) + 3(e−1)Γ(β)

2Γ(2α+β) < 1,

the function Wα,β(z) is convex in D 1
2
.

Remark 4.6. In [20], it is proved that Wα,β(z) is convex in D 1
2

if α ≥ 1 and

β ≥ 1 +
√

3. Setting β = 4 in (H7) of Theorem 4.5, we get α ∈ [0.76, 0.95].
Hence, Theorem 4.5 discusses the case for 0 < α < 1. Therefore, Theorem 4.5
improves the results of [20].
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Theorem 4.7. Let α ≥ 1, β ≥ 1 and Γ(α + β) ≥ 2Γ(β). Then Wα,β(z) is
close-to-convex with respect to the function − log(1− z).

Proof. Let Wα,β(z) = z +
∑∞
k=2 ak−1z

k, where ak−1 = 1
(k−1)!Γ(α(k−1)+β) > 0

for all k ≥ 2. Clearly, 2a1 = 2Γ(β)
Γ(α+β) ≤ 1, under the given hypothesis. Now we

will show that {kak−1}∞k=2 is decreasing. For any k ≥ 2, we obtain

k2Γ(αk + β) = k2Γ(α(k − 1) + α+ β)

≥ k2Γ(α(k − 1) + 1 + β)

= k2(α(k − 1) + β)Γ(α(k − 1) + β)

> (k + 1)Γ(α(k − 1) + β).

Using the above inequality, for any k ≥ 2, we have

kak−1 − (k + 1)ak = Γ(β)

[
k

(k − 1)!Γ(α(k − 1) + β)
− k + 1

k!Γ(αk + β)

]
= Γ(β)

[
k2Γ(αk + β)− (k + 1)Γ(α(k − 1) + β)

k!Γ(α(k − 1) + β)Γ(αk + β)

]
> 0.

Hence, {kak−1}k≥2 is a decreasing sequence. Using Lemma 2.4, we conclude
that Wα,β(z) is close-to-convex with respect to the function − log(1− z). �

Theorem 4.8. If α ≥ 1, β ≥ 1, then Wα,β(z) = zΓ(β)Wα,β(z2) is close-to-

convex with respect to the function 1
2 log

(
1+z
1−z

)
.

Proof. LetWα,β(z) = zΓ(β)Wα,β(z2) = z+
∑∞
k=2B2k−1z

2k−1, where B2k−1 =
Γ(β)

(k−1)!Γ(α(k−1)+β) > 0 for all k ≥ 2. Clearly, 3B3 = 3Γ(β)
2Γ(2α+β) < 1, under

the given hypothesis. We will prove that {(2k − 1)B2k−1}∞k=2 is a decreasing
sequence. For all α, β ≥ 1 and k ≥ 2, we have

k(2k − 1)Γ(αk + β) = k(2k − 1)Γ(α(k − 1) + α+ β)

≥ k(2k − 1)Γ(α(k − 1) + 1 + β)

= k(2k − 1)(α(k − 1) + β)Γ(α(k − 1) + β)

> (2k + 1)Γ(α(k − 1) + β).

Using the above inequality, for all α, β ≥ 1 and k ≥ 2, we obtain

(2k − 1)B2k−1 − (2k + 1)B2k+1

= Γ(β)

[
(2k − 1)

(k − 1)!Γ(α(k − 1) + β)
− (2k + 1)

k!Γ(αk + β)

]
= Γ(β)

[
k(2k − 1)Γ(αk + β)− (2k + 1)Γ(α(k − 1) + β)

k!Γ(α(k − 1) + β)Γ(αk + β)

]
> 0.

Therefore, {(2k − 1)B2k−1}k≥2 is a decreasing sequence. Consequently, the
hypothesis of Lemma 2.5 is satisfied. It is well-known that (see [2, p. 55]),
if a function f : D → C satisfies the hypothesis of Lemma 2.5, then it is
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close-to-convex with respect to the function 1
2 log

(
1+z
1−z

)
. Hence, the theorem

is proved. �

5. Conclusion

In this work, we have considered normalized Mittag-Leffler function Eα,β(z)
and normalized Wright function Wα,β(z) and studied certain geometric prop-
erties such as close-to-convexity, univalency, convexity and starlikeness for
α, β > 0 and z ∈ D. In literature, various results related to geometric properties
of Eα,β(z) and Wα,β(z) are available (see [1,16,17,20]) with the condition that
α, β ≥ 1. Results obtained in this work, discuss the case 0 < α ≤ 1. Numerical
computation shows that the obtained results are better than the existing ones
and improve several results available in the literature.

Acknowledgements. The authors would like to thank the reviewers for the
suggestions that helped to improve the paper.
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