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GENERALIZED ALTERNATING SIGN MATRICES AND

SIGNED PERMUTATION MATRICES

Richard A. Brualdi and Hwa Kyung Kim

Abstract. We continue the investigations in [6] extending the Bruhat
order on n× n alternating sign matrices to our more general setting. We

show that the resulting partially ordered set is a graded lattice with a

well-define rank function. Many illustrative examples are given.

1. Introduction

An n× n alternating sign matrix (abbreviated to ASM) is a (0,±1) matrix
such that, ignoring 0’s, the +1’s and−1’s in each row and each column alternate
beginning and ending with +1. The origins and many properties of ASMs can
be found in [1, 3, 9–11].

In [6] a generalization of ASMs was defined as follows: Let u = (u1, u2, . . .,
un), u′ = (u′1, u

′
2, . . . , u

′
n), v = (v1, v2, . . . , vm), and v′ = (v′1, v

′
2, . . . , v

′
m) be

vectors of ±1’s. If A is an m × n matrix, we define A(u, u′|v, v′) to be the
(m+ 2)× (n+ 2) matrix (1) with rows indexed by 0, 1, . . . ,m+ 1 and columns
indexed by 0, 1, . . . , n+ 1.

(1) A(u, u′|v, v′) =

0 u1 u2 · · · un−1 un 0

v1 v′1
v2 v′2
... A

...
vm−1 v′m−1
vm v′m
0 u′1 u′2 · · · u′n−1 u′n 0

.

We then write A = A(u, u′|v, v′)[1, 2, . . . ,m|1, 2, . . . , n] to denote that A is the
middle m× n submatrix of A(u, u′|v, v′), and also write A(u, u′|v, v′)→ A.
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A (u, u′|v, v′)-ASM is an m×n (0,±1)-matrix A as in (1) such that, ignoring
0’s, the +1’s and −1’s in rows 0, 1, 2, . . . ,m + 1 and columns 0, 1, 2, . . . , n + 1
of the (0,±1)-matrix A(u, u′|v, v′) alternate. Thus the condition that the first
and last nonzero entry in each row and column of an ASM is +1 is relaxed,
where now the first and last nonzero of each row is determined by v and v′,
respectively, and the first and last nonzero of each column is determined by
u and u′, respectively. Note also that, unlike for ASMs, the first and last
rows and columns of a (u, u′|v, v′)-ASM depend on u, u′, v, v′ and so may con-
tain more than one nonzero entry. We denote the set of (u, u′|v, v′)-ASMs
by Am,n(u, u′|v, v′). If u = u′ and v = v′ and m = n, we often abbrevi-
ate these notations to: (u, v)-ASM and An(u, v), respectively. If v = u, we
also use the abbreviations (u)-ASM and An(u). Observe that if m = n and
u = v = (−1,−1, . . . ,−1), then a (u)-ASM is an ordinary ASM, and An(u) is
the usual set An of n× n ASMs.

Example 1.1. Let m = 2 and n = 3, and let u = (1,−1, 1), u′ = (−1, 1,−1),
v = (1,−1) and v = (1,−1). Then a (u, u′|v, v′)-ASM is given below:

0 1 −1 1 0

1 −1 1 −1 1
−1 1 −1 1 −1

0 −1 1 −1 0

→
[
−1 1 −1

1 −1 1

]
.

In [6], necessary and sufficient conditions are given for the nonemptiness of
Am,n(u, u′|v, v′). In this paper we primarily consider the case where m = n
and u = u′ and v = v′, that is, the set An(u, v). In this case, a 180 degree
rotation gives a bijection from An(u, v) to An(u, v) where u = (un, . . . , u1) and
v = (vn, . . . , v1). We also sometimes restrict our attention to the case where
u = v, as in ordinary ASMs; in this case, a 90 degree clockwise rotation give a
bijection from An(u) to An(u). Also An(u) is invariant under a reflection over
the main diagonal.

The nonemptiness of An(u, v) is easily decided.

Lemma 1.2. Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be vectors of
±1’s. Then An(u, v) 6= ∅ if and only if u and v contain the same number of
+1’s.

Proof. Suppose that u contains p (+1)’s and (n− p) (−1)’s and v contains q
(+1)’s and (n− q) (−1)’s. Let A ∈ An(u, v). Then p columns of A sum to −1
and (n− p) columns sum to +1. Similarly, q rows of A sum to −1 and (n− q)
rows sum to +1. Hence

−p+ (n− p) = −q + (n− q) implying that p = q.

Conversely, if p = q, let Iu,v be the (0,±1)-matrix whose p × p submatrix in
those columns for which ui = +1 and those rows for which vi = +1 equals −Ip,
and whose (n − p) × (n − p) submatrix in those columns for which ui = −1
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and those rows for which vi = −1 equals In−p, with all other entries equal to
0. Thus Iu,v is in An(u, v). �

Note that in the above proof, we can replace Ip by any p × p permutation
matrix and In−p by any (n − p) × (n − p) permutation matrix, and these
p!(n− p)! signed permutation matrices (definition in the next example) are the
only signed permutation matrices in An(u, v).

Example 1.3. Here and elsewhere we usually use ‘+’ in place of +1 and ‘−’
in place of −1. Also, when we block the cells of a matrix, we usually do not
put in 0’s with an empty cell signifying a 0. Let u = (−,−,+,+,−) and
v = (−,+,−,+,−). Then the following matrix A is in An(u, v).

0 − − + + − 0

− + −
+ − +
− + −
+ − +
− + −
0 − − + + − 0

→ A =


+

−
+

−
+

 .

The matrix A has a special property in that there is exactly one nonzero in
each row and in each column, as in the proof of Lemma 1.2. Thus A is a signed
permutation matrix, that is, a permutation matrix in which some of the 1’s have
been replaced with −1’s. In order that An(u, v) contain a signed permutation
matrix it is necessary and sufficient, as in this example, that u and v have the
same number p of +1’s and so the same number (n− p) of −1’s. �

Let u and v be vectors of ±1’s each containing p (+1)’s and (n− p) (−1)’s.
Let A ∈ An(u, v). Then the +1’s determine a p×p submatrix A+ of A and the
−1’s determine the complementary (n−p)×(n−p) submatrix A− of A. Let A+

be −P where P is a p×p permutation matrix, and let A− be the (n−p)×(n−p)
matrix Q where Q is a permutation matrix, and where all other entries of A
equal 0. Then A is a signed permutation matrix in An(u, v), and every signed
permutation matrix in An(u, v) arises in this way. Let Lp be the p × p anti-
identity (0, 1) matrix (1’s on the antidiagonal). If P = Lp (so A+ = −Lp)
and Q = In−p (so A− = In−p), then the resulting signed permutation matrix
is denoted by In(u, v) and is called the (u, v)-identity matrix. If P = Ip (so
A+ = −Ip) and Q = Ln−p (so A− = Ln−p) matrix, then the resulting signed
permutation matrix is denoted by Ln(u, v) and is called the (u, v)-anti-identity
matrix.
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Example 1.4. Continuing with Example 1.3, we get the (u, v)-identity matrix
as given in

0 − − + + − 0

− + −
+ − +
− + −
+ − +
− + −
0 − − + + − 0

→


+

−
+
−

+

 = I5(u, v),

and the (u, v)-anti-identity matrix as given in

0 − − + + − 0

− + −
+ − +
− + −
+ − +
− + −
0 − − + + − 0

→


+

−
+

−
+

 = L5(u, v).

For any m× n matrix A = [aij ], the sum-matrix (also called corner matrix
in [11]) Σ(A) = [σij ] of A is the m× n matrix where

σij = σij(A) =
∑
k≤i

∑
l≤j

akl (1 ≤ i ≤ m, 1 ≤ j ≤ n),

the sum of the entries in the leading i × j submatrix of A. Define σij = 0 if
i = 0 or j = 0. Then the matrix A is uniquely determined by its sum-matrix
Σ(A), namely,

aij = σij − σi,j−1 − σi−1,j + σi−1,j−1 (1 ≤ i, j ≤ n).

The sum-matrix Σ(A) = [σij ] of a matrix A ∈ An(u, v) has the following
properties which are easily verified:

• The entries in row i and column i of Σ(A) are taken from the set
{0,±1,±2, . . . ,±i}.
• Consecutive entries in a row or column differ in absolute value by at

most 1.
• σin = −(v1 + v2 + · · ·+ vi) for 1 ≤ i ≤ m.
• σmj = −(u1 + u2 + · · ·+ uj) for 1 ≤ j ≤ n.

Example 1.5. Let u = v = (1, 1, 1, 1) so that −I4 ∈ A4(u, v). Then

Σ(−I4) =


−1 −1 −1 −1
−1 −2 −2 −2
−1 −2 −3 −3
−1 −2 −3 −4

 .
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Now let u = (1,−1,−1, 1) and v = (−1,−1, 1, 1). Then

A=


1

1
−1

−1

 ∈ A4(u, v) and Σ(A)=


0 1 1 1
0 1 2 2
−1 0 1 1
−1 0 1 0

 .
Finally, let u = v = (1,−1, 1,−1, 1), a palindromic vector. Then the matrices

A =


−1 1 −1 1 −1

1 −1 1 −1 1
−1 1 −1 1 −1

1 −1 1 −1 1
−1 1 −1 1 −1

 ∈ A5(u, v)

and

Σ(A) =


−1 0 −1 0 −1

0 0 0 0 0
−1 0 −1 0 −1

0 0 0 0 0
−1 0 −1 0 −1


are both palindromic matrices, that is read the same from left-to-right and
right-to-left, and from top-to-bottom and bottom-to-top, equivalently, each of
the rows and each of the columns is palindromic. �

We now briefly summarize the contents of this paper. In the next section we
generalize the Bruhat order on the set Sn of permutations of order n (equiva-
lently, the set Pn of n×n permutation matrices) and the set An of n×n ASMs
to the set An(u, v). As with An we obtain a ranked lattice. In the following
section we investigate the rank of An(u, v) and show that An has the largest
rank and determine the smallest rank for a given n. We illustrate our work
with many examples.

2. Bruhat order

There is a partial order, called the Bruhat order and denoted by �B , defined
on the set Sn of permutations of {1, 2, . . . , n}, equivalently, the set Pn of n×n
permutation matrices, which has also been extended to the set An of n × n
ASMs [9]. We briefly describe this partial order in its various equivalent forms.

(i) For π, τ ∈ Sn, π �B τ provided π can be obtained from τ by a se-
quence of transpositions each of which reduces the number of inver-
sions, not necessarily the set of inversions. There is such a sequence
of transpositions each of which reduces the number of inversions by
exactly one (but not, in general, by removing one inversion). The
identity ιn = (1, 2, . . . , n) (the identity matrix In using Pn) is the
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unique minimal permutation in the Bruhat order on Sn; the anti-
identity ζn = (n, . . . , 2, 1) (the anti-identity matrix Ln using Pn) is
the unique maximal permutation.

In terms of permutation matrices, for P,Q ∈ Pn, P �B Q if and only
if P can be obtained from Q by a sequence of interchanges involving
2×2 submatrices (not necessarily with consecutive rows and consecutive
columns): [

0 1
1 0

]
→
[

1 0
0 1

]
.

(ii) Another characterization of the Bruhat order is: For P,Q ∈ Pn, P �B

Q if and only if Σ(P ) ≥ Σ(Q) (entrywise).
(iii) The Bruhat order extends to An by defining for A1, A2 ∈ An, A1 �B

A2 provided that Σ(A1) ≥ Σ(A2). Then (An,�B) is a graded lat-
tice extending the partially ordered set (Pn,�B), and indeed is the
(unique up to isomorphism) smallest lattice extending (Pn,�B) (the
Dedekind-MacNeille completion of (Pn,�B)) [9]. The minimal element
of (An �B) is In, and the maximal element is Ln.

(iv) For A1, A2 ∈ An, A1 �B A2 if and only if there is a sequence of ASMs,
X1 = A1, X2, . . . , Xp = A2, such that for t = 1, 2, . . . , p− 1, Xt can be
obtained from Xt+1 by an interchange which adds to a 2×2 submatrix
Xt+1[i, j|k, l] (i < j, k < l) of Xt+1 the 2× 2 matrix[

1 −1
−1 1

]
.

In order that the resulting matrices be ASMs, the 2 × 2 submatrix of
Xt+1 must equal [

0 or −1 0 or 1
0 or 1 0 or −1

]
.

An interchange is the analogue for ASMs of a transposition of a per-
mutation matrix.

(v) Let P,Q ∈ Pn. The weak Bruhat order �b on Pn is defined by P �b Q
provided P can be obtained from Q by a sequence of adjacent inter-
changes [

0 1
1 0

]
→
[

1 0
0 1

]
applied to 2 × 2 submatrices with consecutive rows and consecutive
columns. Since interchanges reduce the number of inversions of the
corresponding permutations by exactly 1, (Pn,�b) is a subpartially or-
dered set of (Pn,�B) and, in fact, (Pn,�b) is a lattice. This lattice
can be equivalently described in terms of the corresponding permuta-
tions in Sn as follows: For π1, π2 ∈ Sn, π1 �b π2 if and only if the set
inv(π1) of inversions of π1 is a subset of the set inv(π2) of inversions
of π2. In general, inv(π1) ∩ invπ2 is the set of inversions of a unique
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permutation π1 ∧ π2, the meet of π1 and π2, and inv(π1) ∪ invπ2 is the
set of inversions of a unique permutation π1 ∨π2, the join of π1 and π2
[2].

(vi) Let A1, A2 ∈ An. The weak Bruhat order �b on An can be defined by
writing A1 �b A2 provided A1 can be obtained from A2 by a sequence
of adjacent interchanges each of which adds to a 2×2 submatrix A2[i, i+
1|j, j + 1] of A2 with consecutive rows and columns, the n× n matrix
Ti,j which is all 0’s except for its 2× 2 submatrix determined by rows
i and i+ 1 and columns j and j + 1 which equals[

1 −1
−1 1

]
and where the result is also an ASM. Unlike for Pn, the Bruhat order
and weak Bruhat order coincide on An. (A different definition of weak
Bruhat order onAn is given in [8]; with this definition, the weak Bruhat
order differs from the Bruhat order on An for n ≥ 3 and indeed is not
a lattice.)

These and other properties of ASMs can be found in several places including
[2, 4, 5, 7, 9].

Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be vectors of ±1’s where u
and v have the same number of +1’s and the same number of −1’s. We now
consider extending the Bruhat order onAn to the classAn(u, v) of (u, v)-ASMs.
There are three possibilities for defining A1 �B A2 for A1, A2 ∈ An(u, v),
namely:

(a) Σ(A1) ≥ Σ(A2) (entrywise). (The immediate generalization of the
Bruhat order on An.)

(b) A1 can be obtained from A2 by a sequence of interchanges. (Known to
be equivalent to (a) for An.)

(c) A1 can be obtained from A2 by a sequence of adjacent interchanges.
(The weak-Bruhat order condition which is known to be equivalent to
(b) for An.)

We shall show that these three possibilities are also equivalent for An(u, v).
Thus each determines the Bruhat order on An(u, v), and it will be shown that
this Bruhat order on An(u, v) is a lattice, indeed a graded lattice with a well-
defined rank function. We clearly have that (c) implies (b), and it is easy to
check that (b) implies (a). Thus we have only to show that (a) implies (c) to
obtain the equivalence.

We prove the following theorem using (c) above.

Theorem 2.1. Let A1 and A2 be in An(u, v). Then there exists a unique
M ∈ An(u, v) such that

Σ(M) = max{Σ(A1),Σ(A2)} (entrywise maximum).
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Moreover, A1 and A2 can be obtained from M by a sequence of adjacent inter-
changes.

Before proving this theorem we give some of its consequences.

Corollary 2.2. The three possibilities (a), (b), and (c) are equivalent for
An(u, v) and each defines the Bruhat order �B on An(u, v).

Proof. Let A1, A2 ∈ An(u, v) with Σ(A1) ≥ Σ(A2). Then max{Σ(A1),Σ(A2)}
= Σ(A1), and by Theorem 2.1 A1 can be obtained from A2 by a sequence of
adjacent interchanges. The corollary now follows from the discussion preceding
Theorem 2.1. �

Note that this corollary implies that, as with ordinary ASMs, there is no
difference between the Bruhat order and the weak Bruhat order on A(u, v).

Corollary 2.3. The partially ordered set (An(u, v),�B) is a distributive lattice
where for A1, A2 ∈ An(u, v), the meet and join are given by

(i) A1 ∧ A2 = B where B is the matrix in An(u, v) such that Σ(B) =
max{Σ(A1),Σ(A2)}.

(ii) A1 ∨ A2 = C where C is the matrix in An(u, v) such that Σ(C) =
min{Σ(A1),Σ(A2)}.

Proof. By Theorem 2.1 An(u, v) has a well-defined meet and assertion (i) fol-
lows. Assertion (ii) can be obtained from the analogue of Theorem 2.1 with
minimum replacing maximum; it also follows from the fact that An(u, v) is
finite and so the existence of joins follows from the existence of meets.

In order that (An(u, v),�B) be distributive, we must have

A1 ∧ (A2 ∨A3) = (A1 ∨A2) ∧ (A1 ∨A3)

for all A1, A2, A3 ∈ An(u, v). The distributive property for the real numbers
with the usual ≤ order relation holds trivially. It then follows from (i) and (ii)
that (An(u, v),�B) is also distributive. �

Corollary 2.4. The (u, v)-identity matrix In(u, v) is the unique minimal el-
ement in An(u, v), and the (u, v)-anti-identity matrix Ln(u, v) is the unique
maximal element in An(u, v).

Proof. For 1 ≤ k ≤ n, let u+(1, 2, . . . , k) equal the number of +1’s in u1, u2, . . .,
uk and let u+(k+ 1, k+ 2, . . . , n) be the number of +1’s in uk+1, uk+2, . . . , un.
Similar notations are used for the number of −1’s, and also for v. For 1 ≤
e, f ≤ n, the number of +1’s in the leading e× f submatrix of In(u, v) is

α+ = min{v−(1, 2, . . . , e), u−(1, 2, . . . , f)}
and the number of −1’s in the leading e× f submatrix of In(u, v) is

α− = v+(1, 2, . . . , e)−min{v+(1, 2, . . . , e), u+(f + 1, f + 2, . . . , n)}.
Hence for Σ(In(u, v)) = [σij ], σef = α+ − α−. Clearly, the sum matrix of any
matrix A ∈ An(u, v) not equal to In(u, v) is entrywise less than or equal to σef
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for all e and f with strict inequality for at least one e, f . A similar calculation
can be done for Ln(u, v). �

For a matrix A ∈ An(u, v), let ρ′(A) equal the sum of the entries of Σ(A),
and let ρ(A) = ρ′(In(u, v))− ρ′(A).

Corollary 2.5. The partially ordered set (An(u, v),�B) is a graded lattice
where the rank of A ∈ (An(u, v),�B) equals ρ(A).

Proof. By Corollary 2.3 (An(u, v),�B) is a lattice. Let A1, A2 ∈ An(u, v)
where A2 covers A1. Then Σ(A1)−Σ(A2) ≥ 0 and A1∧A2 = A1. By Theorem
2.1, A1 can be obtained from A2 by a sequence of adjacent interchanges. Each
interchange increases the sum of the entries of the corresponding Σ-matrix
by 1 and gives a matrix A′ ∈ An(u, v) with A1 �B A′ ≺B A2. Since A2

covers A1, we have that A1 = A′ and ρ′(A1) = ρ′(A2) + 1. Hence A1 can be
obtained from A2 by one adjacent interchange and ρ(A1) = ρ(A2)− 1. Hence
(An(u, v),�B) is graded with rank function ρ(·) where ρ(In(u, v)) = 0 and
ρ(Ln(u, v)) = ρ′(In(u, v))− ρ′(Ln(u, v)). �

We now prove Theorem 2.1.

Proof of Theorem 2.1. Let A1 = [a1ij ], A2 = [a2ij ] ∈ An(u, v), and let D =
[dij ] = Σ(A1)−Σ(A2), an integral matrix with last row and last column all 0’s.
If D = 0, then A1 = A2 and there is nothing to prove. So assume that D 6= 0.

If uj = +1 then, since the ±1’s alternate, the partial sum of column j of a
matrix in An(u, v) down to a row i is either 0 or −1; if uj = −1, this partial
sum is either 0 or 1. Let k ≥ 1 be the smallest integer such that row k of D is
nonzero. Then the following k-partial column sum property holds: The partial
column sums of A1 and A2 down to row (k − 1) are equal.

It thus follows that row k of D is a (0,±1)-vector.
Let l1 ≥ 1 be the smallest integer such that dkl1 6= 0. Then dkl1 = ±1,

and since we may interchange A1 and A2, we may assume that dkl1 = +1. Let
l2 ≥ l1 be the smallest integer such that dkj = 1 for l1 ≤ j ≤ l2 and dk,l2+1 6= 1.
Since dkn = 0, such an l2 exists. The k-partial column sum property implies
that dk,l2+1 = 0. Thus we have either

Case (i) a1kl1 = a2k,l2+1 = +1 and a2kl1 = a1k,l2+1 = 0, or

Case (ii) a1kl1 = a2k,l2+1 = 0 and a2kl1 = a1k,l2+1 = −1.

We only argue the first case (i) with the argument for the second case (ii) being
very similar. So assume (i) holds.

Consider the sequences determined by columns l1 and l2 of A2:

ul1 , a
2
1l1 , a

2
2l1 , . . . , a

2
k−1,l1 , (a

2
k,l1 + 1)

and
ul2+1, a

2
1,l2+1, a

2
2,l2+1, . . . , a

2
k−1,l2+1, (a

2
k,l2+1 − 1).

Since a1kl1 = 1 and a2k,l1 = 0, the +1’s and −1’s in the first of these sequences

alternate. Since a1k,l2+1 = 0 and a2k,l2+1 = +1, the +1’s and −1’s in the second
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of these sequences alternate. Thus there exists a q with l1 ≤ q ≤ l2 such that
in the sequences

uq, a
2
1q, a

2
2q, . . . , a

2
k−1,q, (a

2
k,q + 1) and

uq+1, a
2
1,q+1, a

2
2,q+1, . . . , a

2
k−1,q+1, (a

2
k,q+1 − 1)

the +1’s and −1’s alternate. We choose the smallest such q.
Now consider the alternating sequences

(2) vi, a
2
i1, a

2
i2, . . . , a

2
iq for i > k.

Suppose that the last nonzero entry each of these sequences is −1 for all i > k.
Then for each such i we compute

diq = Σ(A1)iq − Σ(A2)iq

=

Σ(A1)i−1,q +

q∑
j=1

a1ij

−
Σ(A2)i−1,q +

q∑
j=1

a2ij


= (Σ(A1)i−1,q − Σ(A2)i−1,q) +

 q∑
j=1

a1ij −
q∑

j=1

a2ij


= di−1,q +

q∑
j=1

a1ij −
q∑

j=1

a2ij .

Since the last nonzero of each of the sequences (2) is −1, we have that

q∑
j=1

a1ij ≥
q∑

j=1

a2ij .

Therefore diq ≥ di−1,q and so the sequence dkq, dk+1,q, . . . , dnq is nondecreasing.
This contradicts the fact that dkq = 1 and dnq = 0. Let p(≥ k) be the smallest
integer such that the last nonzero of the sequence vp+1, a

2
p+1,1, a

2
p+1,2, . . . , a

2
p+1,q

is +1 and let A1
2 = A2 +Tp,q, where Tp,q is the matrix which is all zeros except

for its 2 × 2 submatrix, determined by rows p and p + 1 and columns q and
q + 1, equal to [

1 −1
−1 1

]
.

Then A1
2 ∈ An(u, v) such that D−

(
Σ(A1)− Σ(A1

2)
)

has just one nonzero entry
+1.

As already indicated, Case (ii) proceeds in a very similar way. Thus con-
tinuing, we obtain for some k1 and k2, that there are adjacent interchanges
A1 → A1

1 → A2
1 → · · · → Ak1

1 and A2 → A1
2 → A2

2 → · · · → Ak2
2 , with

Ak1
1 = Ak2

2 and Σ(Ak1
1 ) = Σ(Ak2

2 ) = max{Σ(A1),Σ(A2)}. �
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Example 2.6. We give an example to illustrate the proof of Theorem 2.1. Let
A1 and A2 be determined, respectively, by:

0 − − + − − 0

− + −
− + −
− + −
+ − +
− + −
0 − − + − − 0

and

0 − − + − − 0

− + −
− + −
− + −
+ − +
− + −
0 − − + − − 0

.

Then we have

Σ(A1) =


1 1 1 1 1
1 1 1 2 2
1 1 1 2 3
1 1 0 1 2
1 2 1 2 3

 , Σ(A2) =


0 0 0 1 1
0 0 0 1 2
0 1 1 2 3
0 1 0 1 2
1 2 1 2 3

 ,
and

D = Σ(A1)− Σ(A2) =


1 1 1 0 0
1 1 1 1 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 .
First, we find the first nonzero row in D (shaded below):

D =


1 1 1 0 0
1 1 1 1 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 .
Then for k = 1 we can find q = 2 in A2 such as

A2 :

0 − − + − − 0

− + −
− + −
− + −
+ − +
− + −
0 − − + − − 0

.

Next we can find p = 2 in A2 such as
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0 − − + − − 0

− + −
− + −
− + −
+ − +
− + −
0 − − + − − 0

.

Then we have A2 + T2,2 = A1
2 ∈ An(u, v) such as

0 − − + − − 0

− + −
− + −
− + −
+ − +
− + −
0 − − + − − 0

+

0 − − + − − 0

− −
− + − −
− − + −
+ +
− −
0 − − + − − 0

=

0 − − + − − 0

− + −
− + − + −
− + −
+ − +
− + −
0 − − + − − 0

.

Thus A2 → A1
2 where

D −
(
Σ(A1)− Σ(A1

2)
)

=


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

In the following example we construct the matrix M of Theorem 2.1.

Example 2.7. Let u = v = (−1,−1,+1,−1) and consider the matrices A1

and A2 in A4(u):

A1 =


+ − +

+ − +
−

+

 , A2 =


+

+
− + −
+

 .
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Then we have

Σ(A1) =


0 1 0 1
1 1 1 2
1 1 0 1
1 2 1 2

 , Σ(A2) =


1 1 1 1
1 1 1 2
0 1 0 1
1 2 1 2

 ,
and

max{Σ(A1),Σ(A2)} =


1 1 1 1
1 1 1 2
1 1 0 1
1 2 1 2

 .
The matrix M such that Σ(M) = max{Σ(A1),Σ(A2)} is

M =


+

+
−

+

 .
Example 2.8. We construct the Bruhat order of (A4(u, v),�B) when u =
(−1,+1,+1,−1) and v = (+1,−1,+1,−1). Its Hasse diagram is illustrated in
Figure 1. The matrices labelled in Figure 1 are identified in Figure 2. The four
unshaded entries in Figure 1 are the signed permutation matrices in An(u, v).

0:I4(u, v)

1A 1B

2A 2B 2C

3A 3B 3C 3D 3E

4A 4B 4C 4F4E4D

5A 5B 5C 5D 5E

6A 6B 6C

7A 7B

8:L4(u, v)

Figure 1. Hasse diagram of (A4(u, v),�B) with u = (−1,+1,+1,−1) and v =
(+1,−1,+1,−1).
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The following are the matrices in the Hasse diagram:

1A 1B 2A 2B
−

+
−
+ − +




−
+ − +

−
+




−
+ − +
− + −
+ − +




−
+ − +

−
+


2C 3A 3B 3C
−

+
−

+




−
+ − +
−
+ − +




−
+ − +
− + −
+ − +




−
+
−

+ − +


3D 3E 4A 4B
−

+
− + −
+ − +




−
+ − +

−
+




−
+ − +
− + −
+ − +




−
+
−

+ − +


4C 4D 4E 4F
−
+

−
+ − +




−
+
−
+ − +




−
+
−

+ − +




−
+ − +
− + −
+ − +


5A 5B 5C 5D
−

+ − +
−
+




−
+

− + −
+ − +




−
+ − +
− + −
+ − +




−
+
−

+ − +


5E 6A 6B 6C
−
+ − +

−
+ − +




−
+

−
+




−
+ − +
−
+




−
+ − +
− + −

+ − +


7A 7B
−
+ − +
−

+




−
+
−

+ − +



.

Figure 2. The matrices in (A4(u, v),�B) with u = (−1,+1,+1,−1) and v =
(+1,−1,+1,−1).

Recall that Ti,j is the matrix which is all zeros except for its 2×2 submatrix
determined by row i and i+ 1 and columns j and j + 1 equal to[

1 −1
−1 1

]
.

Let Tn be the set of all such n × n Ti,j . For A1, A2 ∈ An(u, v), we write

A1
(i,j)←−−− A2 provided A1 = A2 +Ti,j . Thus A1 ← A2 denotes that A1

(i,j)←−−− A2

for some (i, j), that is, that A2 covers A1 in (An(u, v),�B).
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Lemma 2.9. For A1 = [a1ij ] ∈ An(u, v), if there exist C1 and C2 such that

C1
(p1,q1)←−−−− A1 and C2

(p2,q2)←−−−− A1

(so A1 covers C1 and C2 in the Bruhat order),

then there exists a unique A2 ∈ An(u, v) such that

A2
(p2,q2)←−−−− C1 and A2

(p1,q1)←−−−− C2

(so C1 and C2 cover A2 in the Bruhat order).

Proof. Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn). Without loss of gen-
erality, we may assume that p1 ≤ p2. Suppose p2 = p1 + 1 and q1 = q2. Since
C1, C2 ∈ An(u, v), the +1’s and −1’s in the following sequences satisfies the
alternating property

vp1+1, a
1
p1+1,1, a

1
p1+1,2, . . . , (a

1
p1+1,q1 − 1), (a1p1+1,q1+1 + 1),

and

vp1+1, a
1
p1+1,1, a

1
p1+1,2, . . . , (a

1
p1+1,q1 + 1), (a1p1+1,q1+1 − 1).

It is a contradiction. A similar contradiction occurs if p1 = p2 and |q1−q2| = 1.
The remainder of the proof is divided into three cases.
Case 1 : p2 > p1 + 1 or |q1 − q2| > 1.
In this case, there is no intersection between the submatrices[
a1p1,q1 + 1 a1p1,q1+1 − 1
a1p1+1,q1 − 1 a1p1+1,q1+1 + 1

]
and

[
a1p2,q2 + 1 a1p2,q2+1 − 1
a1p2+1,q2 − 1 a1p2+1,q2+1 + 1

]
.

Therefore A2 = C1 + Tp2,q2 satisfies the alternating property. Since

A2 = C1 +Tp2,q2 = (A1 + Tp1,q1)+Tp2,q2 = (A1 + Tp2,q2)+Tp1,q1 = C2 +Tp1,q1 ,

and since An(u, v) is a lattice, A2 is the unique matrix in An(u, v) which is
covered by C1 and C2.
Case 2 : p2 = p1 + 1 and q2 = q1 + 1.
Since C1, C2 ∈ An(u, v), we have a1p2,q2 = 0 or −1. Suppose a1p2,q2 = 0. Since
the sequence

uq2 , a
1
1,q2 , a

1
2,q2 , . . . , (a

1
p1,q2 − 1), (a1p2,q2 + 1), a1p2+1,q2

satisfy the alternating property, the last nonzero entry in the sequence

uq2 , a
1
1,q2 , a

1
2,q2 , . . . , a

1
p1,q2

should be +1. Then the sequence

uq2 , a
1
1,q2 , a

1
2,q2 , . . . , a

1
p1,q2 , (a

1
p2,q2 + 1), (a1p2+1,q2 − 1)

does not satisfy the alternating property because of a1p2,q2 + 1 = 0 + 1 = +1.

Therefore we have a1p2,q2 = −1. Consider the sequences:

uq2 , a
1
1,q2 , a

1
2,q2 , . . . , (a

1
p1,q2 − 1), (a1p2,q2 + 1 + 1), (a1p2+1,q2 − 1)
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and

vp2
, a1p2,1, a

1
p2,2, . . . , (a

1
p2,q1 − 1), (a1p2,q2 + 1 + 1), (a1p2,q2+1 − 1).

These sequences satisfy the alternating property. Therefore A2 = C1 + Tp2,q2

satisfies the alternating property. Since

A2 = C1 +Tp2,q2 = (A1 + Tp1,q1)+Tp2,q2 = (A1 + Tp2,q2)+Tp1,q1 = C2 +Tp1,q1 ,

we conclude as in Case 1 that there is a unique A2 ∈ An(u, v) which is covered
by C1 and C2.
Case 3 : p2 = p1 + 1 and q1 = q2 + 1. The argument here is as in Case 2. �

In terms of the Hasse diagram of (An(u, v),�B), Lemma 2.9 asserts that if
there are C1 and C2 such that

C1 C2

A1

(p2, q2)(p1, q1)

then there exists a unique A2 such that

A2

C1 C2

A1

(p1, q1)

(p2, q2)

(p2, q2)

(p1, q1)

Let u and v be such that An(u, v) 6= ∅. The Hasse diagram of (An(u, v),�B)
can be considered as a directed graph Du,v := D(An(u, v),�B) whose set of
vertices is Au,v with an arc A1 → A2 from A1 to A2 if and only if A1 covers
A2. Let d−(A) and d+(A) be the indegree and the outdegree of A in Du,v. The
total-degree d(A) of A is

d(A) = d−(A) + d+(A).

These degrees were investigated in [7] in the case of (An,�B).
As a corollary of Lemma 2.9, we have the following.

Corollary 2.10. Let A ∈ An(u, v) be such that d+(A) = k. Then the number

of paths of length 2 in the directed graph Du,v that begin with A is at least
(
k
2

)
.

Example 2.11. Let u = v = (−1,−1,+1,−1). In Figure 3 the Hasse diagram
of (A4(u),�B) is illustrated. The matrices labeled in Figure 3 are identified in
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Figure 4. Let

A =


+ − +

+ − +
− + −
+

 ∈ A4(u).

Using adjacent interchanges T(i,j), we see that d+(A) = 5 where

A
(1,1)−−−→


+ − +

+
− + −
+

 (6 : SC),

A
(1,3)−−−→


+

+ − +
− + −
+

 (6 : LB),

A
(3,1)−−−→


+ − +

+ − +
−

+

 (6 : RB),

A
(3,3)−−−→


+ − +

+ − +
− + −
+ − +

 (6 : SB),

A
(2,2)−−−→


+ − +

+
−
+

 (6 : SA).

In Figure 3, the matrix A is the matrix labeled as (7:SA) and

|{C|A→ C ′ → C}| =
(

5

2

)
= 10.

We make the following observations using this example: The cardinality
|A4(u)| = 52 > |A4| = 42. The maximum length of a chain in the poset
(An(u, v),�B) (that is, the rank of the poset) is the sum of all entries of
Σ(In(u, v)) − Σ(Ln(u, v)). In this case with u = v = (−1,−1,+1,−1), this
maximum cardinality equals 9 while it equals 10 for A4 (see Figure 5 taken
from [7] with the labeling described there).
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0:I(u)

1:SA

2:SA

3:SB3:SA 3:SC

4:SD4:SA 4:SB 4:SC

5:SB 5:SC 5:SD5:SA

6:SB6:SA 6:SC

7:SA

8:SA

9:L(u)

4:LA 4:LB 4:LC 4:RA 4:RB 4:RC

5:LA 5:LB 5:LC 5:RA 5:RB 5:RC

1:LA 1:RA

2:LA 2:LB 2:RB2:RA

3:LA 3:LB 3:RB3:RA

6:LA 6:LB 6:RB6:RA

7:LA 7:LB 7:RB7:RA

8:LA 8:RA

Figure 3. Hasse diagram of (A4(u),�B) for u = (−1,−1,+1,−1).

The matrices in the Hasse diagram drawn in Figure 3 are given in Figure 4.
In Figure 3, the matrices shaded in the center are all symmetric. The matrices
on the right are transposes of the corresponding matrices on the left.
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1 : LA 2 : LA 2 : LB 3 : LA
+

+
−
+ − +




+
+

−
+ − +




+
+
−
+ − +




+
+
−
+ − +


3 : LB 4 : LA 4 : LB 4 : LC

+
+ − +

− + −
+ − +




+
+ − +
− + −
+ − +




+
+ − +

−
+




+
+

− + −
+ − +


5 : LA 5 : LB 5 : LC 6 : LA
+

+ − +
−
+




+
+ − +
− + −
+ − +




+
+

− + −
+




+
+
−

+ − +


6 : LB 7 : LA 7 : LB 8 : LA
+

+ − +
− + −
+




+
+

−
+




+ − +
+
−

+ − +




+ − +
+
−

+


0 : I(u) 1 : SA 2 : SA 3 : SA

+
+
−

+




+
+

−
+




+
+ − +
− + −
+ − +




+
+ − +
− + −
+ − +


3 : SB 3 : SC 4 : SA 4 : SB

+
+ − +
−
+




+
+
−

+ − +




+
+ − +
−
+




+
+ − +

−
+ − +


4 : SC 4 : SD 5 : SA 5 : SB

+
+

−
+




+ − +
+

− + −
+ − +




+
+ − +

−
+




+ − +
+
− + −
+ − +


5 : SC 5 : SD 6 : SA 6 : SB

+ − +
+

−
+




+ − +
+

− + −
+ − +




+ − +
+
−
+




+ − +
+ − +
− + −
+ − +


6 : SC 7 : SA 8 : SA 9 : L(u)

+ − +
+

− + −
+




+ − +
+ − +
− + −
+




+
+

−
+ − +




+
+
−

+



.

Figure 4. The matrices in (A4(u, v),�B) with u = v = (−1,−1,+1,−1).
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1234

1243 1324 2134

11 2143 44

1342 1423 D4 2314 3124

1432 34 43 12 21 3214

33 23 3142 2413 32 22

2341 24 4213 31 4123

2431 3241 D′4 4132 4213

41 3412 14

3421 43124231

4321

Figure 5. Hasse diagram of (A4,�B).

Example 2.12. In Figure 6 we exhibit the Hasse diagram of (A4(u),�B) for
the palindromic vector u = (−1,+1,+1,−1).
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0:I(u)

1:LA 1:SA 1:RA

2:LA 2:SA 2:RA

3:LA 3:LB 3:SA 3:RA 3:RB

4:LA 4:LB 4:LC 4:RB 4:RC 4:RA

5:LA 5:SA 5:LB 5:RB 5:SB 5:RA

6:SA 6:LA 6:RA6:LB 6:RB 6:SB

7:LA 7:RA 7:SA 7:LB 7:RB

8:SA 8:SB 8:SC

9:SA 9:SC9:SB

10:L(u)

Figure 6. Hasse diagram of (A4(u),�B) where u = (−1,+1,+1,−1)

The poset whose Hasse diagram is shown in Figure 6 is isomorphic to the
poset (A4,�B) whose Hasse diagram is shown in Figure 5. The coloring of
the vertices in Figure 6 has been chosen to highlight this isomorphism. The
isomorphism is an example of the general observation made in Example 2.11.
The matrices in the Hasse diagram in Figure 6 are given in Figure 7, with the



942 R. A. BRUALDI AND H. K. KIM

non-highlighted matrices on the right in Figure 6 equal to the transposes of
those on the left.

1 : LA 1 : SA 2 : LA 2 : SA
+

−
−
+ − +




+
−
−

+




+
−

− + −
+ − +




+ − +
−

−
+ − +


3 : LA 3 : LB 3 : SA 4 : LA

+
−

−
+ − +




+
−

−
+ − +




+ − +
− + −

− + −
+ − +




+
−
−

+ − +


4 : LB 4 : LC 5 : LA 5 : LB

+ − +
− + −

−
+ − +




+ − +
− + −

−
+ − +




+ − +
− + −
−

+ − +




+ − +
−

−
+ − +


5 : SA 5 : SB 6 : LA 6 : LB

+ − +
−

− + −
+ − +




+ − +
− + −

−
+ − +




+ − +
−
− + −

+ − +




+ − +
−

− + −
+ − +


6 : SA 6 : SB 7 : LA 7 : LB

+ − +
−

−
+




+
−

−
+ − +




+ − +
−
−

+




+
−

−
+ − +


7 : SA 8 : SA 8 : SB 8 : SC

+ − +
− + −
− + −

+ − +




+ − +
− + −
−

+




+ − +
−

−
+ − +




+
−

− + −
+ − +


9 : SA 9 : SB 9 : SC

+ − +
−

−
+




+
−

−
+




+
−

−
+ − +



.

Figure 7. The matrices in (A4(u),�B) with u = (−1,+1,+1,−1).

We conclude this section with the following example and observation.

Example 2.13. Let u = (u1, u2, . . . , un−1, un) be the palindromic vector where
u1 = un and u2 = · · · = un−1, and v = u. If u1 = un = −1 and u2 = · · · =
un−1 = −1, then An(u) = An. If u1 = +1 and u2 = · · · = un−1 = +1, then
An(u) = −An, the set of negatives of matrices in An. The other two cases are
obtained by taking u1 = +1 and u2 = −1, and u1 = −1 and u2 = +1, where
the two sets of matrices obtained are negatives of each other. So we need
only consider An(u) where u = (+1,−1, . . . ,−1,+1). This class of matrices is
invariant under a 90 degree rotation. The four corners of matrices in An(u),
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up to rotations, determine one of the following 2× 2 matrices:[
−1 −1
−1 −1

]
,

[
0 −1
−1 −1

]
,

[
0 −1
−1 0

]
.

In each case by adding [
1 1
1 1

]
to this corner submatrix we obtain a bijection A → A′ with An. Moreover,
since the only change is in the corners, it is easy to see that for A1, A2 ∈ An(u),
Σ(A1) ≤ Σ(A2) if and only if Σ(A′1) ≤ Σ(A′2). Hence this bijection is a lattice
isomorphism between An(u) and An. �

3. Rank of the lattice (An(u, v),�B)

Let ρ(·) denote the rank function of the graded lattice (An(u, v),�B). Since
Ln(u, v) is the unique maximum element of this lattice, the rank of the lattice
(An(u, v),�B) equals ρ(Ln(u, v)). Moreover, for A ∈ An(u, v), we have

ρ(A) = ρ′(In(u, v))− ρ′(A) = ρ′(In(u, v)−A),

where recall that ρ′(·) denotes the sum of the entries of Σ(·). We have ρ(An) =(
n+1
3

)
, see e.g. [7].

The following lemma is an elementary observation.

Lemma 3.1. Let D = [dij ] = Σ(In − Ln). For i ≤ j, we have

dij = min{i, n− j}.

We first show that the largest rank of the lattices (An(u, v),�B) occurs in
the classical case (An,�B).

Lemma 3.2. Let u and v be (−1,+1)-vectors of order n where u and v contain
the same number of +1’s. Then

ρ(An(u, v)) ≤ ρ(An) =

(
n+ 1

3

)
.

Proof. Let Dn(u, v) = In(u, v) − Ln(u, v) and Σ(Dn(u, v)) = [d(u, v)ij ]. In
case, u = v is an all −1 vector, we write Dn = In − Ln and Σ(Dn) = [dij ].
We claim that Σ(Dn(u, v)) ≤ Σ(Dn) (entrywise). Each row of Dn(u, v) has at
most one +1 and at most one −1, and each row sum is 0. In Dn(u, v) consider
the leading i × j submatrix M1 and its complementary i × (n − j) submatrix
M2 in the upper right corner. Without loss of generality we assume that i ≤ j.
The sum of all of the entries of M1 is d(u, v)ij and the sum of all entries of
M2 is −d(u, v)ij , since each row sum of Dn(u, v) = In(u, v)−Ln(u, v) is 0. We
consider two possibilities:

(i) i ≤ n− j.
The maximum number of +1’s in M1 is i, since each row contains at
most one +1, and thus d(u, v)ij ≤ i.



944 R. A. BRUALDI AND H. K. KIM

(ii) i > n− j.
The maximum number of −1’s in M2 is (n−j), since each row contains
at most one −1, and thus −d(u, v)ij ≥ −(n − j). Hence we have
d(u, v)ij ≤ n− j.

By Lemma 3.1, we have

d(u, v)ij ≤ dij = min{i, n− j}.
Therefore,

ρ(An(u, v)) ≤ ρ(An) =

(
n+ 1

3

)
. �

Lemma 3.3. Let u = (u1, u2, . . . , un) where for some k with 1 ≤ k < n,
u1 = · · · = uk = −1 and uk+1 = . . . = un = +1. Then

An(u) = {A1 ⊕A2 : A1 ∈ Ak and −A2 ∈ An−k}.
Therefore

ρ(An(u)) =

(
k + 1

3

)
+

(
n− k + 1

3

)
.

Proof. Consider A ∈ An(u) and partition A as follows:

A =

[
A1 A12

A21 A2

]
where A1 is k × k.

Then since u1 = · · · = uk = −1, the row sums of A12 are all ≥ 0. Since
uk+1 = · · · = un = +1 the column sums of A12 are all ≤ 0. Suppose that
A12 6= 0, and consider the first nonzero row of A12 and its first nonzero x.
Then x = −1 and hence x must be followed by a +1 in its row. In the column
above this +1 there must be a −1, a contradiction. Thus A12 = 0 and similarly
A21 = 0. The formula for rank now follows. �

We next show that the smallest rank of the lattices (An(u, v),�B) occurs in
the special cases in Lemma 3.3

Lemma 3.4. Let u and v be (−1,+1)-vectors of order n where u and v contain
k −1’s. Let w = (w1, w2, . . . , wn) where w1 = · · · = wk = −1 and wk+1 = · · · =
wn = +1. Then

ρ(An(u, v)) ≥ ρ(An(w)) =

(
k + 1

3

)
+

(
n− k + 1

3

)
.

Proof. For A = [aij ] ∈ An(u, v), let A+ = [a+ij ] be the n × n (0,+1) matrix

where a+ij = +1 if aij = +1 and a+ij = 0 otherwise. Let A− = [a−ij ] be the

n× n (0,−1) matrix where a−ij = −1 if aij = −1 and a−ij = 0 otherwise. Then

A+ +A− = A. It can be checked that

ρ′(I+n (u, v)− L+
n (u, v)) ≥ ρ′(I+n (w)− L+

n (w))

and
ρ′(I−n (u, v)− L−n (u, v)) ≥ ρ′(I−n (w)− L−n (w)).
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We also have

Σ(In(u, v))− Ln(u, v))

= Σ(In(u, v))− Σ(Ln(u, v))

= Σ(In(u, v)+ + In(u, v)−)− Σ(Ln(u, v)+ + Ln(u, v)−)

= Σ(In(u, v)+ − Ln(u, v)+) + Σ(In(u, v)− − Ln(u, v)−).

Therefore,

ρ′(In(u, v))− Ln(u, v))

= ρ′(In(u, v)+ − Ln(u, v)+) + ρ′(In(u, v)− − Ln(u, v)−)

≥ ρ′(In(w)+ − Ln(w)+) + ρ′(In(w)− − Ln(w)−)

= ρ′(In(w)+ + In(w)−)− ρ′(Ln(w)+ + Ln(w)−)

= ρ′(In(w))− Ln(w)).

By Lemma 3.3,

ρ(An(u, v)) ≥ ρ(An(w)) =

(
k + 1

3

)
+

(
n− k + 1

3

)
.

�

Theorem 3.5. Let u and v be (+1,−1) vectors of order n Then

ρ(An(u, v)) ≥
(⌊n

2

⌋
+ 1

3

)
+

(⌈n
2

⌉
+ 1

3

)
.

Proof. Let u and v be (−1,+1)-vectors of order n where u and v contain k
−1’s where 0 ≤ k ≤ n. By Lemma 3.4

ρ(An(u, v)) ≥
(
k + 1

3

)
+

(
n− k + 1

3

)
.

It is a simple calculus exercise to show that
(
k+1
3

)
+
(
n−k+1

3

)
is a minimum

when k =
⌊
n
2

⌋
�

The case of (An(u),�B) where u is palindromic is special.

Corollary 3.6. If u is palindromic,

ρ(An(u)) = ρ(An).

Proof. We have that In(u, u) − Ln(u, u) = In − Ln for all palindromic u, and
hence the result follows. �

The lattice (An,�B) is isomorphic to the lattice (An(u),�B) when u is a
palindromic vector of the form considered in Example 2.11 but this does not
hold for all palindromic u as shown in Figures 8 and 9 where parts of the Hasse
diagram are given for u = (−1,−1,−1,−1,−1) and u = (−1,+1,−1,+1,−1),
respectively. There we see that L5(−1,+1,−1,+1,−1) covers a matrix which
itself covers 5 other matrices while no such matrices exist for L5(−1,−1,−1,−1,
−1).
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20:L5

19:LA 19:LB 19:RB 19:RA

18:LA 18:LB 18:RA18:RB18:SA 18:SB

...

Figure 8. Hasse diagram of (A5(u),�B) when u = (−1,−1,−1,−1,−1).

The following are the matrices in the Hasse diagram:

20 : L5 19 : LA 19 : LB
+

+

+

+

+




+

+

+

+

+




+

+

+

+

+


19 : RB 19 : RA 18 : LA

+

+

+

+

+




+

+

+

+

+




+

+ − +

+

+

+


18 : LB 18 : SA 18 : SB

+

+

+

+

+




+

+

+

+

+




+

+

+ − +

+

+


18 : RB 18 : RA

+

+

+

+

+




+

+

+

+ − +

+

 · · ·

.

20:L5(u)

19:LA · · ·· · ·

18:LA 18:LB 18:LC 18:LD 18:SA· · · · · ·
...

Figure 9. Hasse diagram of (A5(u),�B) when u = (−1,+1,−1,+1,−1).
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The following are the matrices in the Hasse diagram:

19 : LA 18 : LA 18 : LB
+

− + −
+

−
+




+ − +

− + −
+

−
+




+ − +

−
+

−
+


18 : LC 18 : LD 18 : SA

+

− + −
+

−
+




+

− + −
+

−
+ − +




+

− + −
+ − +

− + −
+



.

We conclude with a problem. By Corollary 2.3, (An(u, v),�B) is a distribu-
tive lattice. A join-irreducible element in a distributive lattice L is a nonzero
element that cannot be expressed as the join of two elements below it. Let J be
the set of join-irreducible elements of L. Identifying an element of L with the
join-irreducible elements below it, the distributive lattice L is isomorphic to the
lattice of subsets of J partially ordered by set-inclusion. Thus it is of interest
to determine the join-irreducible elements of the lattices (An(u, v),�B).

In Example 2.8 the set of join-irreducible elements (those that have only one
arrow going down) is J = {1A, 1B, 2B, 2C, 3A, 3C, 5A, 7B}. It seems difficult
to identify in general the join-irreducible elements of (An(u, v),�B) but it
would be of interest to do so for special u and v.

Acknowledgement. We are very grateful to Roger Behrend who provided us
with extensive and valuable comments in the preparation of this paper.
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