DOI QR코드

DOI QR Code

Effects of Roasting Temperature on Quality Characteristics and Biological Activity of Quinoa

퀴노아의 품질특성 및 생리활성에 대한 로스팅 온도의 영향

  • Jin, Mingeun (Department of Food Science and Biotechnology, Kyungsung University) ;
  • Jeon, Ahyeong (Department of Food Science and Biotechnology, Kyungsung University) ;
  • Kwon, Jihyun (Department of Food Science and Biotechnology, Kyungsung University) ;
  • Kim, Naeun (Department of Food Science and Biotechnology, Kyungsung University) ;
  • Kim, Younghwa (Department of Food Science and Biotechnology, Kyungsung University)
  • 진민근 (경성대학교 식품응용공학부) ;
  • 전아영 (경성대학교 식품응용공학부) ;
  • 권지현 (경성대학교 식품응용공학부) ;
  • 김나은 (경성대학교 식품응용공학부) ;
  • 김영화 (경성대학교 식품응용공학부)
  • Received : 2021.06.07
  • Accepted : 2021.06.25
  • Published : 2021.06.30

Abstract

The present study aimed to evaluate the effects of roasting temperature on the quality characteristics and biological activity of quinoa. Quinoa was roasted at 160, 200, and 220℃ for 20 min. The lightness (L*) of quinoa decreased, however, the redness (a*) increased as the roasting temperature increased. The yellowness (b*) was the highest at 160℃ and decreased at 200 and 220℃. The highest contents of total polyphenol, flavonoid, and quercetin were observed at 220℃, the highest roasting temperature. The highest radical scavenging activities of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (73.65%) and α,α-diphenyl-β-picrylhydrazyl free radicals (47.82%) were found in roasted quinoa at 220℃. The α-glucosidase activity was inhibited by 62.13% at this temperature. The roasted quinoa at 220℃ also showed a significant cytoprotective effect against oxidative stress in HepG2 cells. These results could be useful in the development of food products using quinoa.

Keywords

Acknowledgement

이 성과는 2021년도 Brain Busan 21 플러스 사업에 의하여 지원되었고, 이에 감사드립니다.

References

  1. Ahmed IAM, Al Juhaimi FY, Osman MA, Al Maiman SA, Hesham AB. Alqah HA, Elfadil EB, Ghafoor K. 2020. Effect of oven roasting treatment on the antioxidant activity, phenolic compounds, fatty acids, minerals, and protein profile of Samh (Mesembryanthemum forsskalei Hochst) seeds. LWT-Food Sci. Technol., 131:109825 https://doi.org/10.1016/j.lwt.2020.109825
  2. Aqil F, Ahmad I, Mehmood Z. 2006. Antioxidant and free radical scavenging properties of twelve traditionally used Indian medicinal plants. Turk J. Biol., 30(3):177-183
  3. Babiker EE, Uslu N, Al Juhaimi Fahmed, I A M, Ghafoor K, Ozcan M M, Almusallam I A. 2021. Effect of roasting on antioxidative properties, polyphenol profile and fatty acids composition of hemp (Cannabis sativa L.) seeds. LWT-Food Sci. Technol., 139:110537 https://doi.org/10.1016/j.lwt.2020.110537
  4. Baik HJ, Ko YS. 1996. Studies on the aroma components of roasted and ground coffee. Korean J. Food Sci. Technol., 28(1):15-18
  5. Berk E, Hamzalioglu A, Gokmen V. 2019. Investigations on the Maillard reaction in sesame (Sesamum indicum L.) seeds induced by roasting. J. Agric. Food Chem., 67(17):4923-4930 https://doi.org/10.1021/acs.jafc.9b01413
  6. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature, 181(4617):1199-1200 https://doi.org/10.1038/1811199a0
  7. Bolek S, Ozdemir M. 2017. Optimization of roasting conditions of Pistacia terebinthus in a fluidized bed roaster. LWT-Food Sci. Technol., 80:67-75 https://doi.org/10.1016/j.lwt.2017.02.007
  8. Byun EB, Kim MJ, Kim SJ, Oh NS, Park SH, Kim WS, Song HY, Han JM, Kim K, Byun EH. 2020. Antioxidant activity and neuroprotective effects of ethanol extracts from the core of Diospyros kaki. Korean J. Food Sci. Technol., 52(1):60-66
  9. Carciochi RA, Galvan DAL, Manrique GD. 2016. Effect of roasting conditions on the antioxidant compounds of quinoa seeds. J. Food Technol., 51(4):1018-1025 https://doi.org/10.1111/ijfs.13061
  10. Chandrasekara A, Shahidi F. 2011. Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species. J. Agric. Food Chem., 59:428-436 https://doi.org/10.1021/jf103896z
  11. Chen L, Li K, Liu Q, Quiles J L, Filosa R, Kamal M A et al. 2019. Protective effects of raspberry on the oxidative damage in HepG2 cells through Keap1/Nrf2-dependent signaling pathway. Food Chem. Toxicol., 133:110781 https://doi.org/10.1016/j.fct.2019.110781
  12. Cheon W, Seo D, Kim Y. 2019. Antioxidative and hepatocyte protective effects of guava (Psidium guajava L.) leaves cultivated in Korea. J. Korean Soc. Food Sci. Nutr., 32(1):33-40
  13. Comai S, Bertazzo A, Bailoni L, Zancato M, Costa CV, Allegri G. 2007. The content of proteic and nonproteic (free and protein-bound) tryptophan in quinoa and cereal flours. Food Chem., 100(4):1350-1355 https://doi.org/10.1016/j.foodchem.2005.10.072
  14. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem., 12(2):239-243 https://doi.org/10.1016/S0021-9258(18)88697-5
  15. Formica JV, Regelson W. 1995. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol., 33(12):1061-1080 https://doi.org/10.1016/0278-6915(95)00077-1
  16. Goh HY, Lee YT. 2017. Effects of heat treatments on physicochemical properties and in vitro biological activities of quinoa (Chenopodium quinoa Willd.). J. Korean Soc. Food Sci. Nutr., 46(6):688-694 https://doi.org/10.3746/jkfn.2017.46.6.688
  17. Ha JH, Kim DH 1996. Changes in the physico-chemical properties of the meals from the defatted sesame seeds at various roasting temperature and time. Korean J. Food Sci. Technol., 28(2):246-252.
  18. Ha TJ, Lee JH, Lee MH, Lee BW, Kwon, HS, Park, CH, Jang DS. 2012. Isolation and identification of phenolic compounds from the seeds of Perilla frutescens (L.) and their inhibitory activities against α-glucosidase and aldose reductase. Food Chem., 135(3):1397-1403 https://doi.org/10.1016/j.foodchem.2012.05.104
  19. Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. 2016. Oxidative stress and inflammation: what polyphenols can do for us? Oxid. Med. Cell Longevity., 2016: 7432797 https://doi.org/10.1155/2016/7432797
  20. Jeong KY, Sim KH. 2020. Comparison of the nutritional composition of quinoa seeds cultivated in korea depending on different cooking methods. Korean J. Food & Nutr., 33(2):117-130 https://doi.org/10.9799/KSFAN.2020.33.2.117
  21. Jeong SO, Kim HY, Han JS, Kim MJ, Kang MS, Kim AJ. 2016. Manufacture and quality evaluation of beverage with prepared with roasted seoritae. Korean J. Food & Nutr., 29(4):557-564 https://doi.org/10.9799/ksfan.2016.29.4.557
  22. Jo SH, Cho CY, Ha KS, Choi EJ, Kang YR, Kwon YI. 2013. The antioxidant and antimicrobial activities of extracts of selected barley and wheat inhabited in Korean peninsula. J. Korean Soc. Food Sci. Nutr., 42(7):1003-1007 https://doi.org/10.3746/JKFN.2013.42.7.1003
  23. Kannan. RR, Mutalib AA, Stephen OA, Wendy AS, Johannes VS. 2013. Potential antiradical and alpha-glucosidase inhibitors from Ecklonia maxima (Osbeck) Papenfuss. Food chem., 141(2):1412-1415. https://doi.org/10.1016/j.foodchem.2013.04.019
  24. Kim DS, Lim SB. 2018. Composition of phenolic compounds and antioxidant activities of subcritical water extracts of onion skin. J. Korean Soc. Food Sci. Nutr., 47(4):403-413 https://doi.org/10.3746/jkfn.2018.47.4.403
  25. Kim EY, Jeong YH, Gu SY, Song KY, Kim IY, Kim KY. 2019. Physicochemical characteristics of Brazilian Coffea arabica cv. Catuai coffee extracts with different roasting conditions. Korean J. Food Sci. Technol., 48(7):748-756
  26. Kim GN, Kwon YI, Jang HD. 2011. Protective mechanism of quercetin and rutin on 2, 2'-azobis (2-amidinopropane) dihydrochloride or Cu2+-induced oxidative stress in HepG2 cells. Toxicol In Vitro., 25(1):138-144 https://doi.org/10.1016/j.tiv.2010.10.005
  27. Kim IY, Jung SY, Kim EY, Yun HY, Zhang SK, Ha JH, Jeong YH. 2020. Physicochemical characteristics of El Salvadoran Coffee arabica cv. Bourbon coffee extracts with various roasting conditions. Korean J. Food Sci. Technol., 52(3):212-219 https://doi.org/10.9721/KJFST.2020.52.3.212
  28. Kowalski RJ, Medina-Meza IG, Thapa BB, Murphy KM, Ganjyal GM. 2016. Extrusion processing characteristics of quinoa (Chenopodium quinoa Willd.) var. Cherry Vanilla. J. Cereal Sci., 70:91-98 https://doi.org/10.1016/j.jcs.2016.05.024
  29. Lee H, Yu M, K HJ, Sung J, Jeong HS, Lee J. 2020. Antioxidant and anti-diabetic activities of ethanol extracts of cereal grains and legumes. J. Korean Soc. Food Sci. Nutr., 49(4):323-328 https://doi.org/10.3746/jkfn.2020.49.4.323
  30. Lee P, Hyeonbin O, Kim SY, Kim YS. 2019. Physicochemical characteristics and quality properties of a cereal-based beverage made with roasted kamut (Triticum turgidum ssp.). J. Korean Soc. Food Sci. Nutr., 48(10):1112-1119 https://doi.org/10.3746/jkfn.2019.48.10.1112
  31. Li Y, Duan S, Jia H, Bai C, Zhang L, Wang Z. 2014. Flavonoids from tartary buckwheat induce G2/M cell cycle arrest and apoptosis in human hepatoma HepG2 cells. Acta Biochim. Biophys. Sin. (Shanghai), 46(6):460-470 https://doi.org/10.1093/abbs/gmu023
  32. Moon JW, Cho JS. 1999. Changes in flavor characteristics and shelf-life of roasted coffee in different packaging conditions during storage. Korean J. Food Sci. Technol., 31(2):441-447
  33. Navruz-Varli S, Sanlier N. 2016. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J. Cereal Sci., 69:371-376 https://doi.org/10.1016/j.jcs.2016.05.004
  34. Oyaizu M. 1986. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J. Nutr. Diet., 44(6):307-315 https://doi.org/10.5264/eiyogakuzashi.44.307
  35. Patrignani M, Rinaldi GJ, Lupano CE. 2016. In vivo effects of Maillard reaction products derived from biscuits. Food Chem., 196:204-210 https://doi.org/10.1016/j.foodchem.2015.09.038
  36. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26(9-10):1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  37. Sa YJ, Kim JS, Kim MO, Jeong HJ, Yu CY, Park DS, Kim MJ. 2010. Comparative study of electron donating ability, reducing power, antimicrobial activity and inhibition of α-glucosidase by Sorghum bicolor extracts. Korean J. Food Sci. Technol., 42(5):598-604
  38. Shin NR, Moon JS, Shin SY, Li L, Lee YB, Kim TJ, Han NS. 2016. Isolation and characterization of human intestinal Enterococcus avium EFEL009 converting rutin to quercetin. Lett. Appl. Microbiol., 62(1):68-74 https://doi.org/10.1111/lam.12512
  39. Sim KH. 2019. A comparison of food components between Korean and imported quinoa (Chenopodium quinoa Willd.). J. Korean Soc. Food Sci. Nutr., 32(5):442-453
  40. Vignoli JA, Viegas MC, Bassoli DG, de Toledo Benassi M. 2014. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Res. Int., 61:279-285 https://doi.org/10.1016/j.foodres.2013.06.006
  41. Yao Y, Wang H, Xu F, Zhang Y, Li Z, Ju X, Wang L. 2020. Insoluble-bound polyphenols of adlay seed ameliorate H2O2-induced oxidative stress in HepG2 cells via Nrf2 signalling. Food chem., 325:126865 https://doi.org/10.1016/j.foodchem.2020.126865
  42. You Q, Chen F, Wang X, Jiang Y, Lin S. 2012. Anti-diabetic activities of phenolic compounds in muscadine against alpha-glucosidase and pancreatic lipase. LWT-Food Sci. Technol., 46(1):164-168 https://doi.org/10.1016/j.lwt.2011.10.011
  43. Yousef MI, Omar SA, El-Guendi MI, Abdelmegid LA. 2010. Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rat. Food Chem. Toxicol., 48(11):3246-3261 https://doi.org/10.1016/j.fct.2010.08.034
  44. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chem., 64(4):555-559 https://doi.org/10.1016/S0308-8146(98)00102-2
  45. Zhou R, Cai W, Xu B. 2017. Phytochemical profiles of black and yellow soybeans as affected by roasting. Int. J. Food Prop., 20(12):3179-3190 https://doi.org/10.1080/10942912.2017.1280678
  46. INIA [Instituto Nacional de Innovacion Agraria], FAO [Food and Agriculture Organization of the United Nations]. 2015. Catalogue of commercial varieties of quinoa in Peru: A future planted thousands of years a ago. Available from http://www.fao.org/documents/card/en/c/f351e07b-bd68-4724-a849-778dd44e6358/ [cited 20 January 2021]