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Summary 
Object orientation has become the predominant paradigm for 
conceptual modeling (e.g., UML), where the notions of class and 
object form the primitive building blocks of thought. Classes act as 
templates for objects that have attributes and methods (actions). The 
modeled systems are not even necessarily software systems: They can 
be human and artificial systems of many different kinds (e.g., teaching 
and learning systems). The UML class diagram is described as a 
central component of model-driven software development. It is the 
most common diagram in object-oriented models and used to model 
the static design view of a system. Objects both carry data and execute 
actions. According to some authorities in modeling, a certain degree 
of difficulty exists in understanding the semantics of these notions in 
UML class diagrams. Some researchers claim class diagrams have 
limited use for conceptual analysis and that they are best used for 
logical design. Performing conceptual analysis should not concern the 
ways facts are grouped into structures. Whether a fact will end up in 
the design as an attribute is not a conceptual issue. UML leads to 
drilling down into physical design details (e.g., private/public 
attributes, encapsulated operations, and navigating direction of an 
association). This paper is a venture to further the understanding of 
object-orientated concepts as exemplified in UML with the aim of 
developing a broad comprehension of conceptual modeling 
fundamentals. Thinging machine (TM) modeling is a new modeling 
language employed in such an undertaking. TM modeling interlaces 
structure (components) and actionality where actions infiltrate the 
attributes as much as the classes. Although space limitations affect 
some aspects of the class diagram, the concluding assessment of this 
study reveals the class description is a kind of shorthand for a richer 
sematic TM construct.  
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1. Introduction 
 
Modeling in software engineering and system engineering 
involves the process of collecting and analyzing information 
about a system to build a representation of the involved domain. 
A system is “what is distinguished as a system” [1] carved out 
of reality. Distinguishing an entity as being a system is a 
necessary and sufficient criterion for it being a system [1]. The 
internality of a system includes structural and behavioral 
aspects that form a single coherent, distinguishable whole. The 
underlying assumption of this line of thinking is that reality 

embeds domains that are susceptible to being expressed as 
formalized or semi-formalized models. Conceptual modeling is 
concerned with identifying, analyzing, and describing the 
essential concepts and constraints of such domains [2]. 
Conceptual models are built in the early stages of system 
development, preceding design and implementation; they can 
also be useful, even if no system is contemplated, to clarify 
ideas about structure and functions in a perceived part of the 
world [3]. Wand et al. [4] state four purposes for conceptual 
models: supporting an analyst’s understanding of an application 
domain, communicating with stakeholders, communicating 
with implementers, and documenting system rationale for 
future needs. 

Currently, the object-oriented paradigm (e.g., UML) has 
become prevalent for conceptual modeling [5]. Object-
orientation allows computer scientists to make compelling 
comparisons to the real world, where “all tangible things are 
objects, and where it is not hard to conceive of most intangible 
things as objects, too. With object-oriented programming, 
computer science takes a break from mathematics, and is 
influenced by philosophy” [6]. 

1.1 Focus: The Class Diagram 
 
Object-orientation is based on objects and classes as the 
primitive building blocks. According to Pedroni and Meyer [7], 
the concepts of classes, message passing, and single and 
multiple inheritance were initially programming concepts, but 
they are in fact useful for a far more general purpose: designing 
systems, modeling systems, and more generally thinking about 
systems. The modeled systems are not even necessarily 
software systems: They can be human and artificial systems of 
many different kinds (e.g., teaching and learning activities) [7]. 

The UML class diagram is called a “bridge” between software 
specification and software realization. It is the most common 
method in modeling object-oriented systems [8] and used to 
model the static design view of a system. It is described as a 
central component for representing a domain in a platform-
independent manner and serves as a basis for generation of 
platform-specific details that are required for further generation 
of a software code [9]. During the requirements analysis, the 
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class diagram is viewed from the conceptual perspective and is 
used as a problem domain dictionary (potential classes), and it 
contains least specific notation [10]. 

 

1.2 Research Problem: Difficulties in Class Semantics 
 
However, in spite of the wide adaptation of the object-oriented 
approach and UML as the most common modeling paradigm, 
“The use of object-concepts in conceptual modeling has not 
been widely adapted. A main reason is that there are no 
generally accepted semantics of these concepts as conceptual 
modeling elements” [4]. In object-oriented modeling, “The 
basic concepts are tightly interrelated and cannot be easily 
taught and learned in isolation” [11]. This complexity is 
intrinsic to object orientation and cannot be removed [7]. For 
example, in modeling the relationship between notions of 
species, for apes and particular apes, we say that there is a 
concept SPECIES (representing the set of all species), with 
instances such as APE. However, APE may be viewed as a set 
of all apes. It may be argued that APE may be modeled as a 
subconcept of SPECIES. However, since APE is a set of all apes, 
SPECIES, being a super concept of APE, must contain all apes 
as their members, which is clearly wrong [5][12]. 

In general, according to Sedrakyan et al. [13], “There is a 
certain degree of difficulty in understanding a system 
represented by means of UML diagrams.” A survey of UML 
practitioners [14] [9] shows class diagrams are not fully used 
for further software development, either for code generation or 
documentation. Hence, class diagram has lost the role it could 
have played in software development (i.e., serving as a bridge 
between system specification on the user side and software 
components on the developer side) [15][9]. It is reported that 
some commercial industries find modeling cumbersome and 
slows down productivity [16] [9]. “For such projects, it makes 
sense to use UML as a sketch and have your model contain 
some architectural diagrams and a few class and sequence 
diagrams to illustrate key points” [17] [9].  

In Halpin’s [18] opinion, class diagrams “have limited use for 
conceptual analysis and are best used for logical design.” 
According Halpin [18],  

When I’m performing conceptual analysis... I sure don’t want 
to bother about how facts are grouped into structures. 
Whether some fact will end up in the design as an attribute is 
not a conceptual issue. UML covers both data and behavioral 
modeling, and lets you drill down into physical design details. 
You can declare whether an attribute is private, public, or 
protected, what operations are encapsulated in an object, and 
whether an association can be navigated in one direction only.  

Hay [19] argued, “There is no such thing as ‘object-oriented 
analysis’ only object-oriented design” and that “UML is … not 
suitable for analyzing business requirements in cooperation 
with business people.” The UML model is complicated and 
much harder to present to an audience of business people. UML 

and object-oriented analysis are fundamentally design tools, but 
not ones suitable for analyzing business requirements in 
cooperation with business people [19].  

 

1.3 Objectives 
 

This paper is an attempt to understand object-oriented modeling 
further as exemplified by the class concept in UML. Class 
diagrams convey rather little semantics on their own [20]. To 
address the issue of class concept semantics, we use a thinging 
machine (TM) model that provides a parallel conceptual 
representation for classes. The main TM construct is called a 
thimac (i.e., a thing/machine). We start with the simplest class 
structure, hoping to expand the analysis if it proves fruitful. The 
research strategy is to “translate” classes into TM notions then 
observe the differences, especially with exposed features in 
both types of representations. 

1.4 Overview 
 

The next section provides a review and example of TM 
modeling. The review aim is to achieve a self-contained paper 
while the example is a new contribution. Section 3 provides two 
samples of re-modeling of single UML classes. Section 4 
presents a bank account class diagram with two subclasses. 
Section 5 gives further analysis using instances of classes. 

2. TM Modeling 

TM modeling articulates ontology in terms of an entity that is 
simultaneously a thing and a machine, called a thimac [21-31]. 
A thimac is like a double-sided coin. One side of the coin 
exhibits the characterizations assumed by the thimac, whereas, 
on the other side, operational processes emerge that provide 
dynamics (facilitation of change in thimacs). A thing is simple 
unity of “what is there,” of what stands by itself subjected to 
doing. By contrast, a machine is “what it does” as mere 
actionality (there is only in potentia; i.e., as essential 
possibilities rather than as substantive particular realities); 
that is, a machine is “turned on” by time flow that gives rise to 
actions. A thimac could be a composite entity of nets of 
subthimacs. To complement Gaines’s [1] definition of a 
system mentioned in the introduction, a system is a thimac 
that is the totality of a hierarchy of thimacs. 

In the object-oriented models (e.g., UML), this two-faceted 
construct is expressed as a hierarchy of classes structured by 
the classification link. Concepts are viewed alternatively as 
objects and as classes of their subconcepts [32]. According 
to Pirotte and Massart [32], “Each concept is a two-faceted 
construct with an object facet (a concept is an instance of a 
more abstract concept at the next higher level of the 
taxonomy) and a class facet (a concept is a class of refined 
concepts that are its instances at the next lower level).” 
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The TM is the plurality factor by which a thing becomes 
unified. For example, a water machine processes (fusion 
process) O and H2 to create water. The thimac is a template 
(class-like) for such fusion that is realized (object-ed) when 
the thimac is eventized with a time subthimac. In TM modeling, 
thimacs are the “alphabet of being” [33]. Interaction among 
thimacs involves flows of things and triggering, as will be 
illustrated later. 

2.1 Genetic Actions 

Thimacs are the source for generic actions to be applied in 
conceptual modeling to describe structure/behavior as a world 
of systems (thimacs). The generic (i.e., not made up of more 
basic operations) actions in the machine (see Fig. 1) are merely 
potentialities that do not yet act, waiting to be eventized, which 
will be discussed when modeling system behavior. The actions 
represent the kind of compresent action in which all things 
essentially engage. 

Fig. 1 can be described as follows: 

Arrive: A thing moves to a machine. 
Accept: A thing enters the machine. For simplification, we 

assume that all arriving things are accepted; hence, 
we can combine the arrive and accept stages into one 
stage: the receive stage. 

Release: A thing is ready for transfer outside the machine. 
Process: A thing is changed, but no new thing results. 
Create: A new thing is born in the machine. 
Transfer: A thing is input into or output from a machine. 
 
Additionally, the TM model includes memory organization that 
plays the role of storage for each action. For simplification 
purposes, one may assume each thimac has a single storage area. 
Additionally, the TM model includes the mechanism of 
triggering (denoted by a dashed arrow in this study’s figures), 
which initiates a flow from one machine to another. Multiple 
machines can interact with each other through movement of 
things or triggering. Triggering is a transformation from one 
series of movements to another. 

 
 
 
 
 
 

 

 

2.2 Example 

Haugen et al. [34] model cooking beef in the sequence diagram 
shown partially in Fig. 2. According to Haugen et al. [34], from 
the figure, the work of the cook making beef is assumed to be 
intuitive, as follows: The cook receives an order for the main 

dish and then turns on the heat and waits until the heat is 
adequate. Then he fetches the sirloin meat from the refrigerator 
before putting it on the grill. Then he fetches the sirloin from 
the stove. He then sends the steak to the customer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2.1 Static TM Model 

Fig. 3 shows the TM model that corresponds to this sequence 
diagram. In the figure, the customer (circle 1) creates an order 
(2) that flows (3) to the cook (4), who processes it (5) to trigger 
(6) the heat in the stove (7). The ON state is processed (8) to the 
right temperature. The sirloin (9) is fetched from the 
refrigerator (10) by the cook (11) to be put on the grill (12). 
There, it is processed (13) to trigger the creation of a steak (14), 
which flows to the customer (15 and 16).  

The TM description in Fig. 3 is static in the atemporal sense. It 
involves the spatiality of things’ boundaries, such as customer, 
cook, stove, refrigerator, and grill pan, as given in Haugen et 
al.’s [34] description. It also involves actionality, the five TM 
generic actions, and flow/triggering (arrows). The actions are 
not PROCESSES (in the generally understood meaning). For 
example, create is what the thimac machine does. Create is a 
noun that refers to the potential act of creation, not a verb that 
indicates a PROCESS in time. One may say the create stage 
should have been named the creation stage. However, as we 
will see when specifying the dynamic model from the static 
model, this creation, when time is involved, should become the 
event create. Accordingly, we have opted to use create on both 
static and dynamic levels. Similar discussion can be applied to 
the other TM actions.  

 
 
 
 
 
 
 
 

…
Fig. 2  Partial view of the sequence diagram that models 

making beef (from Haugen et al. [34]). 

Fig. 1  The thinging machine.
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2.2.2 TM Events Model 

In TM modeling, actionality is a static notion embedding 
potentiality of events and behavior that appears when time is 
added to the static model. A thimac in the static model 
“exists/appears” in the system as a thing and as a machine, but 
without “behavior” (e.g., time-oriented notion). The static 
model gains behavior through events. An event is formed from 
 

 A thing (has specific spatiality; e.g., a boundary) and 
a machine (has actionality)  

 Time. 

For example, Fig. 4 show the event The cook fetches the meat 
from the refrigerator. The region in the figure is a subdiagram 
of the static model. To develop the events model, it is necessary 
to identify the underlying decompositions (regions) where 
behavior can happen (potentiality of dynamism), as shown in 
Fig. 5. Accordingly, in Fig. 5, the following event regions are 
developed. 
 
Event 1 (E1): The customer creates an order that flows to the cook. 
Event 2 (E2): The cook processes the order and turns ON the stove. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Event 3 (E3): The heat in the stove reaches an adequate level. 
Event 4 (E4): The cook fetches the meat from the refrigerator.  
Event 5 (E5): The cook puts the meat on the grill. 
Event 6 (E6): The meat is processed, thus creating a steak. 
Event 7 (E7): The cook takes the steak from the grill. 
Event 8 (E8): The cook sends the steak to the customer. 
  

Fig. 3  The static model of making beef. 

Fig. 4 The event The cook fetches meat from the refrigerator. 

Fig. 5  The events model. 
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2.2.3 Behavioral model 

The specification of events in Fig. 5 requires defining the 
chronology of legitimate events. To accomplish that, we follow 
Ehrich and Goguen’s [35] metaphor of the “blinking observer.” 
According to Ehrich and Goguen [35], assume that you are an 
observer who is always blinking. Then, when you look at a 
thing, you will see its traces of events and values as follows: 
Each time you open your eyes, you will take note of the events 
happening at that time. You will see all the traces of all the 
events and will notice which events happen at the same time 
(synchronization). Events may appear interleaved and/or 
simultaneous. Fig. 6 shows this registering of the chronology of 
events, thus defining the behavioral model where the legal 
sequence of events for an order is specified.  

3. Remodeling a Single Class 

In object-oriented modeling, an attribute is any member of a 
class of entities that is capable of being attributed to objects. 
Terms that are similar attributes include 
property characteristic, type, and predicate. One of the 
disagreements in ontological research concerns the rule that 
states intrinsic attributes and associations should never be 
modeled as entity types in a conceptual model [36]. In 
modern philosophy, several debates involve the fundamental 
nature of attributes. Plato called them “forms” and viewed them 
as universals; that is, as capable of being instantiated by 
different objects (entities that can have instances).  

TM modeling provides a representation without a sharp 
distinction between classes and attributes, as in the case of 
UML. A class, a subclass, and attributes are all thimacs or 
subthimacs. We show that such an approach takes the notion of 
encapsulation of structure and activities to its end, where 
“methods” are wrapped with “attributes.”  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
In programming, “encapsulation” means data and programming 
methods are wrapped together in an object. At the conceptual 
level, such a notion is translated as wrapping attributes and 
methods of the class/object. In TM modeling, because classes 
and attributes are all thimacs (machines), they both have 
wrapped structures and actions.  

3.1 Example 1 
 
Fig. 7 illustrates these notions for a single class, Person, taken 
from [37]. Fig. 8 shows the TM representation of this Person 
class. Structurally, the so-called attributes are subthimacs 
located within the thimac containing Person. Each of these 
“attributes” has its own events; for example, getName () is an 
event that gets the particular value of Name (release+transfer) 
at the global level and feeds it (transfer+receive) to Name. Fig. 
9 shows the difference between the static (passive) thimac 
setName() and the (active) event setName(). 

Fig. 7  The class Person (incomplete, adopted 

Fig. 6  The behavioral model in terms of the chronology of events.

Fig. 8  The TM representation of the class Person. 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021 
 

 

144

  
As an illustration of these passive/active features, consider a 
stack of integers as a machine where we observe the following 
specifications and events of “push (9)” in a semiformal 
language. 

Passive:  

stack.transfer()→receive()---> stack.state.create(empty) 

Active:  

event[stack.transfer(9)→receive(9)] ---> 
event[stack.state.create(not empty)] 

Note that “push 9” is implemented as transfer and receive TM 
actions. In addition, note that actions (typically called atomic 
operations in the terminology of the object-oriented community 
[35]) become events only if time is involved.  

Note the TM feature of a complete wrapping of structure and 
behavior in every thimac and subthimac without the rigidity of 
the UML class template. As an illustration, we show the 
constructing of Person from its “attributes,” say, as a record or 
tuple in database terminology. No sharp distinction of attributes 
and methods exists, as in the UML class. The methods are 
completely dissipated into the TM actions. There is no need for 
the mysterious notion of UML operations where objects 
operate on or are operated on.  

The notion of state (of an object) in TM modeling exists at a 
different level of specification that involves events/time. Thus, 
the notion of behavior appears at this second level of 
specification. The methods are constructed in terms of the five 
actions. See Fig. 9 for a sample “attribute” name that shows the 
two levels of specification. 

The class template seems to be a shorthand notation for the TM 
representation. This supports Knapp’s [20] thesis that class 
diagrams convey little semantics on their own. Additionally, the 
TM representation as a high-level conceptual description 
supports Halpin’s view [18] that class diagrams have limited 
use for conceptual analysis and are best used for logical design. 
The class diagram furnishes a specific design setting of a 
structure—in Halpin’s words, “how facts are grouped into 
structures” [18].  

The class diagram can be generated from the TM model. If we 
eliminate TM actions and arrows, then we produce a very 
similar notation to that of the usual definition of the class (see 
Fig. 10). Of course, in this case, we have to introduce the notion 
of operation that mixes actionality and events or behavior. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Example 2 
 
According to Steinhart [38], the object-oriented approach 
provides a hierarchy of classes, much like the Aristotelian 
genus–species hierarchy. TM modeling provides a hierarchy of 
thimacs—one that defines classes and attributes. Thimacs have 
subthimacs. For example, one might define the class Human by 
giving it instance variables of name, weight, and gender [38]. 
In TM modeling, the thimac Human has the subthimacs name, 
weight, and gender (see Fig. 11). Fig. 11 is a static description 
that includes the five generic actions. The actions here are 
potentiality for behavior. These actions are “activated” in a time 
or event context.  

Then one might define the instance of Human by giving it the 
name “Bob,” a weight of 150 units, and the gender “male” (see 
Fig. 12). For example, eating is one of the processes of the 
instance labeled Human. Hence, eat is a method attributed to a 
Human thimac [38] (see Fig. 13).  

  

Fig. 9  The thimac setName() (left) and the event setName 
(right). 

Fig. 11  Object-oriented human class (left) and the corresponding 
TM thimac (right). 

Fig. 10  Class structure produced by eliminating actions and arrows in the TM representation. 
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Then one might define two instances of Human, giving the first 
the name “Bob,” the weight 150, and the gender “male” and the 
second the name “Sue,” the weight 110, and the gender “female.” 
Processes associated with the instances of a class are defined by 
the methods of the class. For example, eating is one of the 
processes of an instance labeled Human. Hence, eat is a method 
used by a Human thimac; when an instance of Human eats, its 
weight is increased. In continuing this example, one might 
define a class Food.  

4. A Class with Two Subclasses 
 
According to Donald Bell in IBM Developer [39] (referring to 
the Oracle and Java tutorials [40]), there are two basic 
categories of diagrams in UML 2: structure diagrams and 
behavior diagrams. The structure diagrams include the 
foundational class diagram that provides an initial set of 
notation elements that all other structure diagrams use. 
Inheritance in object-oriented design refers to the ability of one 
class to inherit the identical functionality of another class and 
then add new functionality of its own. Fig. 14 shows an 

example of how both CheckingAccount and SavingsAccount 
classes inherit attributes from the BankAccount class [39]. 

Fig. 15 shows the TM model that corresponds to this bank 
account class diagram. The general structure is formed from the 
bank account (1 [pink numbers]), owner (2), checking account 
(3), and savings account (4), with balance (5) divided into a 
checking balance (6) and a saving balance (7) and respective 
amounts (8 and 9) that are repeated for the purpose of 
diagrammatic convenience. Note that the checking account (3) 
and the savings account (4) (rectangles with thick 
circumferences) are mirror images of each other; hence, we will 
detail only the savings account (4). 

In a typical transaction, first, bank accounts (1) are activated 
(processed) (10). Note that representation of the bank accounts 
(many of them denoted by “…” in the top right corner of the 
figure) is simplified by eliminating the step of progressing from 
the set of bank accounts to a single bank account. This 
simplification is performed to go along with the given UML 
diagram that starts with a single bank account. 

Processing the bank account (e.g., by displaying a starting page) 
is followed by processing the owner of the account through 
requesting and receiving his or her identification (11 and 12).  

We assume this is followed by selecting (processing [14]) the 
savings account.  

Inside the savings account are the withdrawal (15) and deposit 
(16) thimacs (note the process states in both of these thimacs). 
 Accordingly, the amount of the transaction is inputted (17). 
 The amount flows (19) are to be compared with the current 

balance (20 and 21) that calculates the result of the deposit 
or withdrawal (22). 

 If “deposit” was selected for the transaction, then the new 
balance will flow to the savings account balance (23). 

 If “withdrawal” was selected, then the result will flow to 
be processed (24). 
- If the result is negative, then an insufficient fund 

message is sent (25). 
- If the result is positive, then a “give” instruction is 

issued (26) that triggers (27) the release of money, 
resulting in a new balance. 

  Fig. 14  The class diagram given in [39]. 

Fig. 12 Object-oriented human instances (left) and the corresponding TM 
instances (right). 

Fig. 13 Object-oriented human class with a method (left) and the 
corresponding TM thimac (right). 
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Note the interlacement of structure (components) and 
actionality (five generic TM actions) in the model of Fig. 15. 
Still, the model is static and the dynamic aspects will next be 
superimposed on this initial model. Actions infiltrate the 
attributes as much as the classes. The TM model presents a 
foundation for modeling the organizational framework of the 
system that involves classes. We observe that the UML class 
description is a kind of shorthand for this TM foundation. Thus, 
to reproduce the UML class diagram from the TM model, we 
can perform the following steps: 
 
1. Remove all generic actions, thus producing Fig. 16. 
2. Construct a hierarchal form instead of contained-in 

constructs, thus producing Fig. 17. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15 The TM model of the class diagram of the bank account. 

Fig. 17 Hierarchal form of the simplified TM model of 
the class diagram of the bank account. 

Fig. 16 The static TM model after removing generic actions and flows (arrow). 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021                                  
 

 

147

Note that the simplified form of the static model (Fig. 16) 
includes create stages that have not been included in Fig. 15 for 
the sake of simplification. This indicates a two-stage procedure 
of constructing the bank account system as follows. 

1. Using the create actions (Fig. 16), an empty template is 
constructed in a way similar to creating an initial object of 
a class. For example, the user would create an (empty-null) 
account, create an (empty) owner, create an (empty) 
savings account, create an (empty) checking account, etc. 
This series of creations erects the necessary software and 
data structure apparatus for an (empty) structure account. 

2. Using process actions (Fig. 15), the template produced in 
(1) is filled with values (e.g., the owner, balances, etc.). 

However, the TM model is a rich model with further behavioral 
structures that are applied to Fig. 15 with the following events 
(see Fig. 18). 

Event 1 (E1): Access bank accounts (i.e., not other applications 
such as loans and credit cards, etc.). 

Event 2 (E2): An Owner (e.g., identification) is received. 
Event 3 (E3): The transaction involves a checking account. 
Event 4 (E4): The transaction involves a savings account. 
 

 

Event 5 (E5): Deposit in a checking account.  
Event 6 (E6): Withdrawal from a checking account. 
Event 7 (E7): Withdrawal in a savings account. 
Event 8 (E8): Deposit in a savings account. 
Event 9 (E9): Amount received. 
Event 10 (E10): In checking account, amount (positive for 

deposit or negative for withdrawal) flows to be processed. 
Event 11 (E11): In checking account, balance flows to be 

processed with amount.  
Event 12 (E12): In savings account, amount flows to be 

processed. 
Event 13 (E13): In savings account, balance flows to be 

processed with deposit amount.  
Event 14 (E14): In checking account, a new balance is generated. 
Event 15 (E15): In savings account, a new balance is generated. 
Event 16 (E16): In checking account, the balance is updated if a 

deposit is made. 
Event 17 (E17): In savings account, the balance is updated if a 

deposit is made. 
Event 18 (E18): In checking account, if a withdrawal occurs, a 

new balance flows to be processed.  
Event 19 (E19): In savings account, if a withdrawal occurs, a 

new balance flows to be processed. 
 
 
  

 
Fig. 18 The TM model of the class diagram of the bank account. 
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Event 20 (E20): In checking account, if there is a withdrawal and 
the new balance is negative, an “insufficient funds” message is 
sent. 

Event 21 (E21): In savings account, if there is a withdrawal and 
the new balance is negative, an ‘insufficient fund’ message is 
sent. 

Event 22 (E22): In checking account, if there is a withdrawal and 
the new balance is positive, cash is sent and a balance update is 
triggered. 

Event 23 (E23): In savings account, if there is a withdrawal and 
the new balance is positive, cash is sent and a balance update is 
triggered. 

Fig. 19 shows the behavioral model of this bank account 
example.  

5. Further Analysis: Instances of Classes 
 
The analysis in this section aims at further understanding the 
difference between the two notions of class and object or, in 
TM terminology, between a thimac and its corresponding time-
impregnated version.  

The notion of class is generally taken as a formal counterpart of 
universals [36]. However, according to a different conception, 
properties/attributes are themselves particulars, 
albeit abstract ones [41]. Being particular and abstract can be 
stated as being both properties and objects—things that are 
typically called tropes. Tropes are independent entities whereby 
universals are resemblance classes of tropes and particular 
objects are pluralities of tropes. In philosophy, a trope is an 
instance of a property of a specific entity: the redness of John’s 
T-shirt is a trope that inheres in John’s T-shirt [36]. According 
to Guizzardi et al. [36], “Both John’s T-shirt and the redness of 
John’s T-shirt are particulars. However, they are particulars of 
very different natures. Tropes are particulars which can only 
exist in other individuals.”  

 

 

 

 

 

 

 

 

 

 

In TM modeling, being red may mean that the thimac has 
sharable (universal) flow from redness (transfer, receive) that 
has particularization in an event (see Fig. 20). In such a view, 
being red could not be without redness as a source of this being 
red. On the other hand, it could be claimed no such thing called 
(universal) redness exists. Redness is the result of light 
reflected in such a way as to be perceived as red. Nevertheless, 
this trope-like interpretation represents flow in the TM, as 
shown in Fig. 21. Redness is created independently and locally 
as a subthimac of the apple thimac. In the case of an apple and 
grape, two instances of redness resemble each other. 
Accordingly, the TM model can represent both of these 
interpretations.   

 
Fig. 19  The behavioral model. 

Fig. 20  A thimac of red (thing) (bottom) and its 
particularization/event (top). 

Fig. 21  The TM flow defines the redness of the apple.
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Consider the former universality-based TM representation. 
Thimacs are eventized and thus are converted to particulars. We 
classify objects (eventized thimacs) as being of the same type. 
Fig. 22 illustrates the thimac as a general term (top) that is 
eventized (bottom). As stated previously, the events are 
represented by their regions. The grape and apple have the same 
color, which means both have a subthimac of (universal) 
redness. The “existence” of redness depends on the appearance 
of the redness thimac in our model; however, the appearance of 
a redness thimac implies the existence of a (universal) “source” 
of redness. Similar particularization can be applied to the trope-
based representation.  

6. Conclusion 
 
A class diagram describes a certain conception of static 
structure in the system and adopts the notion of relationships 
among those entities. This paper broadens the understanding of 
such a construct with the aim of developing broad conceptual 
modeling fundamentals. A new modeling language called TM 
modeling was employed in this undertaking. The TM concept 
provides interlacement between structure (components) and 
actionality whereby actions infiltrate the attributes as much as 
the classes. However, the class notion in the context of the 
UML model involves more complex notions than the simple 
classes discussed in this paper. Nevertheless, from the current 
study, we can conclude that the involved class description 
embeds a far richer sematic construct, as reflected in the 
corresponding TM representation. In general, the current UML 
class construct seems to restrain conceptual modeling to a rigid 
form. Future research involving class-based structures that are 
more complicated would clarify such conclusion.  
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