
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

139

Manuscript received May 5, 2021
Manuscript revised May 20, 2021

https://doi.org/10.22937/IJCSNS.2021.21.5.21

Classes in Object-Oriented Modeling (UML): Further
Understanding and Abstraction

Sabah Al-Fedaghi
sabah.alfedaghi@ku.edu.kw, salfedaghi@yahoo.com

Computer Engineering Department, Kuwait University, Kuwait

Summary
Object orientation has become the predominant paradigm for
conceptual modeling (e.g., UML), where the notions of class and
object form the primitive building blocks of thought. Classes act as
templates for objects that have attributes and methods (actions). The
modeled systems are not even necessarily software systems: They can
be human and artificial systems of many different kinds (e.g., teaching
and learning systems). The UML class diagram is described as a
central component of model-driven software development. It is the
most common diagram in object-oriented models and used to model
the static design view of a system. Objects both carry data and execute
actions. According to some authorities in modeling, a certain degree
of difficulty exists in understanding the semantics of these notions in
UML class diagrams. Some researchers claim class diagrams have
limited use for conceptual analysis and that they are best used for
logical design. Performing conceptual analysis should not concern the
ways facts are grouped into structures. Whether a fact will end up in
the design as an attribute is not a conceptual issue. UML leads to
drilling down into physical design details (e.g., private/public
attributes, encapsulated operations, and navigating direction of an
association). This paper is a venture to further the understanding of
object-orientated concepts as exemplified in UML with the aim of
developing a broad comprehension of conceptual modeling
fundamentals. Thinging machine (TM) modeling is a new modeling
language employed in such an undertaking. TM modeling interlaces
structure (components) and actionality where actions infiltrate the
attributes as much as the classes. Although space limitations affect
some aspects of the class diagram, the concluding assessment of this
study reveals the class description is a kind of shorthand for a richer
sematic TM construct.

Key words: Conceptual analysis, logical design, classes, static model,
behavioral model

1. Introduction

Modeling in software engineering and system engineering
involves the process of collecting and analyzing information
about a system to build a representation of the involved domain.
A system is “what is distinguished as a system” [1] carved out
of reality. Distinguishing an entity as being a system is a
necessary and sufficient criterion for it being a system [1]. The
internality of a system includes structural and behavioral
aspects that form a single coherent, distinguishable whole. The
underlying assumption of this line of thinking is that reality

embeds domains that are susceptible to being expressed as
formalized or semi-formalized models. Conceptual modeling is
concerned with identifying, analyzing, and describing the
essential concepts and constraints of such domains [2].
Conceptual models are built in the early stages of system
development, preceding design and implementation; they can
also be useful, even if no system is contemplated, to clarify
ideas about structure and functions in a perceived part of the
world [3]. Wand et al. [4] state four purposes for conceptual
models: supporting an analyst’s understanding of an application
domain, communicating with stakeholders, communicating
with implementers, and documenting system rationale for
future needs.

Currently, the object-oriented paradigm (e.g., UML) has
become prevalent for conceptual modeling [5]. Object-
orientation allows computer scientists to make compelling
comparisons to the real world, where “all tangible things are
objects, and where it is not hard to conceive of most intangible
things as objects, too. With object-oriented programming,
computer science takes a break from mathematics, and is
influenced by philosophy” [6].

1.1 Focus: The Class Diagram

Object-orientation is based on objects and classes as the
primitive building blocks. According to Pedroni and Meyer [7],
the concepts of classes, message passing, and single and
multiple inheritance were initially programming concepts, but
they are in fact useful for a far more general purpose: designing
systems, modeling systems, and more generally thinking about
systems. The modeled systems are not even necessarily
software systems: They can be human and artificial systems of
many different kinds (e.g., teaching and learning activities) [7].

The UML class diagram is called a “bridge” between software
specification and software realization. It is the most common
method in modeling object-oriented systems [8] and used to
model the static design view of a system. It is described as a
central component for representing a domain in a platform-
independent manner and serves as a basis for generation of
platform-specific details that are required for further generation
of a software code [9]. During the requirements analysis, the

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

140

class diagram is viewed from the conceptual perspective and is
used as a problem domain dictionary (potential classes), and it
contains least specific notation [10].

1.2 Research Problem: Difficulties in Class Semantics

However, in spite of the wide adaptation of the object-oriented
approach and UML as the most common modeling paradigm,
“The use of object-concepts in conceptual modeling has not
been widely adapted. A main reason is that there are no
generally accepted semantics of these concepts as conceptual
modeling elements” [4]. In object-oriented modeling, “The
basic concepts are tightly interrelated and cannot be easily
taught and learned in isolation” [11]. This complexity is
intrinsic to object orientation and cannot be removed [7]. For
example, in modeling the relationship between notions of
species, for apes and particular apes, we say that there is a
concept SPECIES (representing the set of all species), with
instances such as APE. However, APE may be viewed as a set
of all apes. It may be argued that APE may be modeled as a
subconcept of SPECIES. However, since APE is a set of all apes,
SPECIES, being a super concept of APE, must contain all apes
as their members, which is clearly wrong [5][12].

In general, according to Sedrakyan et al. [13], “There is a
certain degree of difficulty in understanding a system
represented by means of UML diagrams.” A survey of UML
practitioners [14] [9] shows class diagrams are not fully used
for further software development, either for code generation or
documentation. Hence, class diagram has lost the role it could
have played in software development (i.e., serving as a bridge
between system specification on the user side and software
components on the developer side) [15][9]. It is reported that
some commercial industries find modeling cumbersome and
slows down productivity [16] [9]. “For such projects, it makes
sense to use UML as a sketch and have your model contain
some architectural diagrams and a few class and sequence
diagrams to illustrate key points” [17] [9].

In Halpin’s [18] opinion, class diagrams “have limited use for
conceptual analysis and are best used for logical design.”
According Halpin [18],

When I’m performing conceptual analysis... I sure don’t want
to bother about how facts are grouped into structures.
Whether some fact will end up in the design as an attribute is
not a conceptual issue. UML covers both data and behavioral
modeling, and lets you drill down into physical design details.
You can declare whether an attribute is private, public, or
protected, what operations are encapsulated in an object, and
whether an association can be navigated in one direction only.

Hay [19] argued, “There is no such thing as ‘object-oriented
analysis’ only object-oriented design” and that “UML is … not
suitable for analyzing business requirements in cooperation
with business people.” The UML model is complicated and
much harder to present to an audience of business people. UML

and object-oriented analysis are fundamentally design tools, but
not ones suitable for analyzing business requirements in
cooperation with business people [19].

1.3 Objectives

This paper is an attempt to understand object-oriented modeling
further as exemplified by the class concept in UML. Class
diagrams convey rather little semantics on their own [20]. To
address the issue of class concept semantics, we use a thinging
machine (TM) model that provides a parallel conceptual
representation for classes. The main TM construct is called a
thimac (i.e., a thing/machine). We start with the simplest class
structure, hoping to expand the analysis if it proves fruitful. The
research strategy is to “translate” classes into TM notions then
observe the differences, especially with exposed features in
both types of representations.

1.4 Overview

The next section provides a review and example of TM
modeling. The review aim is to achieve a self-contained paper
while the example is a new contribution. Section 3 provides two
samples of re-modeling of single UML classes. Section 4
presents a bank account class diagram with two subclasses.
Section 5 gives further analysis using instances of classes.

2. TM Modeling

TM modeling articulates ontology in terms of an entity that is
simultaneously a thing and a machine, called a thimac [21-31].
A thimac is like a double-sided coin. One side of the coin
exhibits the characterizations assumed by the thimac, whereas,
on the other side, operational processes emerge that provide
dynamics (facilitation of change in thimacs). A thing is simple
unity of “what is there,” of what stands by itself subjected to
doing. By contrast, a machine is “what it does” as mere
actionality (there is only in potentia; i.e., as essential
possibilities rather than as substantive particular realities);
that is, a machine is “turned on” by time flow that gives rise to
actions. A thimac could be a composite entity of nets of
subthimacs. To complement Gaines’s [1] definition of a
system mentioned in the introduction, a system is a thimac
that is the totality of a hierarchy of thimacs.

In the object-oriented models (e.g., UML), this two-faceted
construct is expressed as a hierarchy of classes structured by
the classification link. Concepts are viewed alternatively as
objects and as classes of their subconcepts [32]. According
to Pirotte and Massart [32], “Each concept is a two-faceted
construct with an object facet (a concept is an instance of a
more abstract concept at the next higher level of the
taxonomy) and a class facet (a concept is a class of refined
concepts that are its instances at the next lower level).”

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

141

The TM is the plurality factor by which a thing becomes
unified. For example, a water machine processes (fusion
process) O and H2 to create water. The thimac is a template
(class-like) for such fusion that is realized (object-ed) when
the thimac is eventized with a time subthimac. In TM modeling,
thimacs are the “alphabet of being” [33]. Interaction among
thimacs involves flows of things and triggering, as will be
illustrated later.

2.1 Genetic Actions

Thimacs are the source for generic actions to be applied in
conceptual modeling to describe structure/behavior as a world
of systems (thimacs). The generic (i.e., not made up of more
basic operations) actions in the machine (see Fig. 1) are merely
potentialities that do not yet act, waiting to be eventized, which
will be discussed when modeling system behavior. The actions
represent the kind of compresent action in which all things
essentially engage.

Fig. 1 can be described as follows:

Arrive: A thing moves to a machine.
Accept: A thing enters the machine. For simplification, we

assume that all arriving things are accepted; hence,
we can combine the arrive and accept stages into one
stage: the receive stage.

Release: A thing is ready for transfer outside the machine.
Process: A thing is changed, but no new thing results.
Create: A new thing is born in the machine.
Transfer: A thing is input into or output from a machine.

Additionally, the TM model includes memory organization that
plays the role of storage for each action. For simplification
purposes, one may assume each thimac has a single storage area.
Additionally, the TM model includes the mechanism of
triggering (denoted by a dashed arrow in this study’s figures),
which initiates a flow from one machine to another. Multiple
machines can interact with each other through movement of
things or triggering. Triggering is a transformation from one
series of movements to another.

2.2 Example

Haugen et al. [34] model cooking beef in the sequence diagram
shown partially in Fig. 2. According to Haugen et al. [34], from
the figure, the work of the cook making beef is assumed to be
intuitive, as follows: The cook receives an order for the main

dish and then turns on the heat and waits until the heat is
adequate. Then he fetches the sirloin meat from the refrigerator
before putting it on the grill. Then he fetches the sirloin from
the stove. He then sends the steak to the customer.

2.2.1 Static TM Model

Fig. 3 shows the TM model that corresponds to this sequence
diagram. In the figure, the customer (circle 1) creates an order
(2) that flows (3) to the cook (4), who processes it (5) to trigger
(6) the heat in the stove (7). The ON state is processed (8) to the
right temperature. The sirloin (9) is fetched from the
refrigerator (10) by the cook (11) to be put on the grill (12).
There, it is processed (13) to trigger the creation of a steak (14),
which flows to the customer (15 and 16).

The TM description in Fig. 3 is static in the atemporal sense. It
involves the spatiality of things’ boundaries, such as customer,
cook, stove, refrigerator, and grill pan, as given in Haugen et
al.’s [34] description. It also involves actionality, the five TM
generic actions, and flow/triggering (arrows). The actions are
not PROCESSES (in the generally understood meaning). For
example, create is what the thimac machine does. Create is a
noun that refers to the potential act of creation, not a verb that
indicates a PROCESS in time. One may say the create stage
should have been named the creation stage. However, as we
will see when specifying the dynamic model from the static
model, this creation, when time is involved, should become the
event create. Accordingly, we have opted to use create on both
static and dynamic levels. Similar discussion can be applied to
the other TM actions.

…
Fig. 2 Partial view of the sequence diagram that models

making beef (from Haugen et al. [34]).

Fig. 1 The thinging machine.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

142

2.2.2 TM Events Model

In TM modeling, actionality is a static notion embedding
potentiality of events and behavior that appears when time is
added to the static model. A thimac in the static model
“exists/appears” in the system as a thing and as a machine, but
without “behavior” (e.g., time-oriented notion). The static
model gains behavior through events. An event is formed from

 A thing (has specific spatiality; e.g., a boundary) and
a machine (has actionality)

 Time.

For example, Fig. 4 show the event The cook fetches the meat
from the refrigerator. The region in the figure is a subdiagram
of the static model. To develop the events model, it is necessary
to identify the underlying decompositions (regions) where
behavior can happen (potentiality of dynamism), as shown in
Fig. 5. Accordingly, in Fig. 5, the following event regions are
developed.

Event 1 (E1): The customer creates an order that flows to the cook.
Event 2 (E2): The cook processes the order and turns ON the stove.

Event 3 (E3): The heat in the stove reaches an adequate level.
Event 4 (E4): The cook fetches the meat from the refrigerator.
Event 5 (E5): The cook puts the meat on the grill.
Event 6 (E6): The meat is processed, thus creating a steak.
Event 7 (E7): The cook takes the steak from the grill.
Event 8 (E8): The cook sends the steak to the customer.

Fig. 3 The static model of making beef.

Fig. 4 The event The cook fetches meat from the refrigerator.

Fig. 5 The events model.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

143

2.2.3 Behavioral model

The specification of events in Fig. 5 requires defining the
chronology of legitimate events. To accomplish that, we follow
Ehrich and Goguen’s [35] metaphor of the “blinking observer.”
According to Ehrich and Goguen [35], assume that you are an
observer who is always blinking. Then, when you look at a
thing, you will see its traces of events and values as follows:
Each time you open your eyes, you will take note of the events
happening at that time. You will see all the traces of all the
events and will notice which events happen at the same time
(synchronization). Events may appear interleaved and/or
simultaneous. Fig. 6 shows this registering of the chronology of
events, thus defining the behavioral model where the legal
sequence of events for an order is specified.

3. Remodeling a Single Class

In object-oriented modeling, an attribute is any member of a
class of entities that is capable of being attributed to objects.
Terms that are similar attributes include
property characteristic, type, and predicate. One of the
disagreements in ontological research concerns the rule that
states intrinsic attributes and associations should never be
modeled as entity types in a conceptual model [36]. In
modern philosophy, several debates involve the fundamental
nature of attributes. Plato called them “forms” and viewed them
as universals; that is, as capable of being instantiated by
different objects (entities that can have instances).

TM modeling provides a representation without a sharp
distinction between classes and attributes, as in the case of
UML. A class, a subclass, and attributes are all thimacs or
subthimacs. We show that such an approach takes the notion of
encapsulation of structure and activities to its end, where
“methods” are wrapped with “attributes.”

In programming, “encapsulation” means data and programming
methods are wrapped together in an object. At the conceptual
level, such a notion is translated as wrapping attributes and
methods of the class/object. In TM modeling, because classes
and attributes are all thimacs (machines), they both have
wrapped structures and actions.

3.1 Example 1

Fig. 7 illustrates these notions for a single class, Person, taken
from [37]. Fig. 8 shows the TM representation of this Person
class. Structurally, the so-called attributes are subthimacs
located within the thimac containing Person. Each of these
“attributes” has its own events; for example, getName () is an
event that gets the particular value of Name (release+transfer)
at the global level and feeds it (transfer+receive) to Name. Fig.
9 shows the difference between the static (passive) thimac
setName() and the (active) event setName().

Fig. 7 The class Person (incomplete, adopted

Fig. 6 The behavioral model in terms of the chronology of events.

Fig. 8 The TM representation of the class Person.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

144

As an illustration of these passive/active features, consider a
stack of integers as a machine where we observe the following
specifications and events of “push (9)” in a semiformal
language.

Passive:

stack.transfer()→receive()---> stack.state.create(empty)

Active:

event[stack.transfer(9)→receive(9)] --->
event[stack.state.create(not empty)]

Note that “push 9” is implemented as transfer and receive TM
actions. In addition, note that actions (typically called atomic
operations in the terminology of the object-oriented community
[35]) become events only if time is involved.

Note the TM feature of a complete wrapping of structure and
behavior in every thimac and subthimac without the rigidity of
the UML class template. As an illustration, we show the
constructing of Person from its “attributes,” say, as a record or
tuple in database terminology. No sharp distinction of attributes
and methods exists, as in the UML class. The methods are
completely dissipated into the TM actions. There is no need for
the mysterious notion of UML operations where objects
operate on or are operated on.

The notion of state (of an object) in TM modeling exists at a
different level of specification that involves events/time. Thus,
the notion of behavior appears at this second level of
specification. The methods are constructed in terms of the five
actions. See Fig. 9 for a sample “attribute” name that shows the
two levels of specification.

The class template seems to be a shorthand notation for the TM
representation. This supports Knapp’s [20] thesis that class
diagrams convey little semantics on their own. Additionally, the
TM representation as a high-level conceptual description
supports Halpin’s view [18] that class diagrams have limited
use for conceptual analysis and are best used for logical design.
The class diagram furnishes a specific design setting of a
structure—in Halpin’s words, “how facts are grouped into
structures” [18].

The class diagram can be generated from the TM model. If we
eliminate TM actions and arrows, then we produce a very
similar notation to that of the usual definition of the class (see
Fig. 10). Of course, in this case, we have to introduce the notion
of operation that mixes actionality and events or behavior.

3.2 Example 2

According to Steinhart [38], the object-oriented approach
provides a hierarchy of classes, much like the Aristotelian
genus–species hierarchy. TM modeling provides a hierarchy of
thimacs—one that defines classes and attributes. Thimacs have
subthimacs. For example, one might define the class Human by
giving it instance variables of name, weight, and gender [38].
In TM modeling, the thimac Human has the subthimacs name,
weight, and gender (see Fig. 11). Fig. 11 is a static description
that includes the five generic actions. The actions here are
potentiality for behavior. These actions are “activated” in a time
or event context.

Then one might define the instance of Human by giving it the
name “Bob,” a weight of 150 units, and the gender “male” (see
Fig. 12). For example, eating is one of the processes of the
instance labeled Human. Hence, eat is a method attributed to a
Human thimac [38] (see Fig. 13).

Fig. 9 The thimac setName() (left) and the event setName
(right).

Fig. 11 Object-oriented human class (left) and the corresponding
TM thimac (right).

Fig. 10 Class structure produced by eliminating actions and arrows in the TM representation.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

145

Then one might define two instances of Human, giving the first
the name “Bob,” the weight 150, and the gender “male” and the
second the name “Sue,” the weight 110, and the gender “female.”
Processes associated with the instances of a class are defined by
the methods of the class. For example, eating is one of the
processes of an instance labeled Human. Hence, eat is a method
used by a Human thimac; when an instance of Human eats, its
weight is increased. In continuing this example, one might
define a class Food.

4. A Class with Two Subclasses

According to Donald Bell in IBM Developer [39] (referring to
the Oracle and Java tutorials [40]), there are two basic
categories of diagrams in UML 2: structure diagrams and
behavior diagrams. The structure diagrams include the
foundational class diagram that provides an initial set of
notation elements that all other structure diagrams use.
Inheritance in object-oriented design refers to the ability of one
class to inherit the identical functionality of another class and
then add new functionality of its own. Fig. 14 shows an

example of how both CheckingAccount and SavingsAccount
classes inherit attributes from the BankAccount class [39].

Fig. 15 shows the TM model that corresponds to this bank
account class diagram. The general structure is formed from the
bank account (1 [pink numbers]), owner (2), checking account
(3), and savings account (4), with balance (5) divided into a
checking balance (6) and a saving balance (7) and respective
amounts (8 and 9) that are repeated for the purpose of
diagrammatic convenience. Note that the checking account (3)
and the savings account (4) (rectangles with thick
circumferences) are mirror images of each other; hence, we will
detail only the savings account (4).

In a typical transaction, first, bank accounts (1) are activated
(processed) (10). Note that representation of the bank accounts
(many of them denoted by “…” in the top right corner of the
figure) is simplified by eliminating the step of progressing from
the set of bank accounts to a single bank account. This
simplification is performed to go along with the given UML
diagram that starts with a single bank account.

Processing the bank account (e.g., by displaying a starting page)
is followed by processing the owner of the account through
requesting and receiving his or her identification (11 and 12).

We assume this is followed by selecting (processing [14]) the
savings account.

Inside the savings account are the withdrawal (15) and deposit
(16) thimacs (note the process states in both of these thimacs).
 Accordingly, the amount of the transaction is inputted (17).
 The amount flows (19) are to be compared with the current

balance (20 and 21) that calculates the result of the deposit
or withdrawal (22).

 If “deposit” was selected for the transaction, then the new
balance will flow to the savings account balance (23).

 If “withdrawal” was selected, then the result will flow to
be processed (24).
- If the result is negative, then an insufficient fund

message is sent (25).
- If the result is positive, then a “give” instruction is

issued (26) that triggers (27) the release of money,
resulting in a new balance.

 Fig. 14 The class diagram given in [39].

Fig. 12 Object-oriented human instances (left) and the corresponding TM
instances (right).

Fig. 13 Object-oriented human class with a method (left) and the
corresponding TM thimac (right).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

146

Note the interlacement of structure (components) and
actionality (five generic TM actions) in the model of Fig. 15.
Still, the model is static and the dynamic aspects will next be
superimposed on this initial model. Actions infiltrate the
attributes as much as the classes. The TM model presents a
foundation for modeling the organizational framework of the
system that involves classes. We observe that the UML class
description is a kind of shorthand for this TM foundation. Thus,
to reproduce the UML class diagram from the TM model, we
can perform the following steps:

1. Remove all generic actions, thus producing Fig. 16.
2. Construct a hierarchal form instead of contained-in

constructs, thus producing Fig. 17.

Fig. 15 The TM model of the class diagram of the bank account.

Fig. 17 Hierarchal form of the simplified TM model of
the class diagram of the bank account.

Fig. 16 The static TM model after removing generic actions and flows (arrow).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

147

Note that the simplified form of the static model (Fig. 16)
includes create stages that have not been included in Fig. 15 for
the sake of simplification. This indicates a two-stage procedure
of constructing the bank account system as follows.

1. Using the create actions (Fig. 16), an empty template is
constructed in a way similar to creating an initial object of
a class. For example, the user would create an (empty-null)
account, create an (empty) owner, create an (empty)
savings account, create an (empty) checking account, etc.
This series of creations erects the necessary software and
data structure apparatus for an (empty) structure account.

2. Using process actions (Fig. 15), the template produced in
(1) is filled with values (e.g., the owner, balances, etc.).

However, the TM model is a rich model with further behavioral
structures that are applied to Fig. 15 with the following events
(see Fig. 18).

Event 1 (E1): Access bank accounts (i.e., not other applications
such as loans and credit cards, etc.).

Event 2 (E2): An Owner (e.g., identification) is received.
Event 3 (E3): The transaction involves a checking account.
Event 4 (E4): The transaction involves a savings account.

Event 5 (E5): Deposit in a checking account.
Event 6 (E6): Withdrawal from a checking account.
Event 7 (E7): Withdrawal in a savings account.
Event 8 (E8): Deposit in a savings account.
Event 9 (E9): Amount received.
Event 10 (E10): In checking account, amount (positive for

deposit or negative for withdrawal) flows to be processed.
Event 11 (E11): In checking account, balance flows to be

processed with amount.
Event 12 (E12): In savings account, amount flows to be

processed.
Event 13 (E13): In savings account, balance flows to be

processed with deposit amount.
Event 14 (E14): In checking account, a new balance is generated.
Event 15 (E15): In savings account, a new balance is generated.
Event 16 (E16): In checking account, the balance is updated if a

deposit is made.
Event 17 (E17): In savings account, the balance is updated if a

deposit is made.
Event 18 (E18): In checking account, if a withdrawal occurs, a

new balance flows to be processed.
Event 19 (E19): In savings account, if a withdrawal occurs, a

new balance flows to be processed.

Fig. 18 The TM model of the class diagram of the bank account.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

148

Event 20 (E20): In checking account, if there is a withdrawal and
the new balance is negative, an “insufficient funds” message is
sent.

Event 21 (E21): In savings account, if there is a withdrawal and
the new balance is negative, an ‘insufficient fund’ message is
sent.

Event 22 (E22): In checking account, if there is a withdrawal and
the new balance is positive, cash is sent and a balance update is
triggered.

Event 23 (E23): In savings account, if there is a withdrawal and
the new balance is positive, cash is sent and a balance update is
triggered.

Fig. 19 shows the behavioral model of this bank account
example.

5. Further Analysis: Instances of Classes

The analysis in this section aims at further understanding the
difference between the two notions of class and object or, in
TM terminology, between a thimac and its corresponding time-
impregnated version.

The notion of class is generally taken as a formal counterpart of
universals [36]. However, according to a different conception,
properties/attributes are themselves particulars,
albeit abstract ones [41]. Being particular and abstract can be
stated as being both properties and objects—things that are
typically called tropes. Tropes are independent entities whereby
universals are resemblance classes of tropes and particular
objects are pluralities of tropes. In philosophy, a trope is an
instance of a property of a specific entity: the redness of John’s
T-shirt is a trope that inheres in John’s T-shirt [36]. According
to Guizzardi et al. [36], “Both John’s T-shirt and the redness of
John’s T-shirt are particulars. However, they are particulars of
very different natures. Tropes are particulars which can only
exist in other individuals.”

In TM modeling, being red may mean that the thimac has
sharable (universal) flow from redness (transfer, receive) that
has particularization in an event (see Fig. 20). In such a view,
being red could not be without redness as a source of this being
red. On the other hand, it could be claimed no such thing called
(universal) redness exists. Redness is the result of light
reflected in such a way as to be perceived as red. Nevertheless,
this trope-like interpretation represents flow in the TM, as
shown in Fig. 21. Redness is created independently and locally
as a subthimac of the apple thimac. In the case of an apple and
grape, two instances of redness resemble each other.
Accordingly, the TM model can represent both of these
interpretations.

Fig. 19 The behavioral model.

Fig. 20 A thimac of red (thing) (bottom) and its
particularization/event (top).

Fig. 21 The TM flow defines the redness of the apple.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

149

Consider the former universality-based TM representation.
Thimacs are eventized and thus are converted to particulars. We
classify objects (eventized thimacs) as being of the same type.
Fig. 22 illustrates the thimac as a general term (top) that is
eventized (bottom). As stated previously, the events are
represented by their regions. The grape and apple have the same
color, which means both have a subthimac of (universal)
redness. The “existence” of redness depends on the appearance
of the redness thimac in our model; however, the appearance of
a redness thimac implies the existence of a (universal) “source”
of redness. Similar particularization can be applied to the trope-
based representation.

6. Conclusion

A class diagram describes a certain conception of static
structure in the system and adopts the notion of relationships
among those entities. This paper broadens the understanding of
such a construct with the aim of developing broad conceptual
modeling fundamentals. A new modeling language called TM
modeling was employed in this undertaking. The TM concept
provides interlacement between structure (components) and
actionality whereby actions infiltrate the attributes as much as
the classes. However, the class notion in the context of the
UML model involves more complex notions than the simple
classes discussed in this paper. Nevertheless, from the current
study, we can conclude that the involved class description
embeds a far richer sematic construct, as reflected in the
corresponding TM representation. In general, the current UML
class construct seems to restrain conceptual modeling to a rigid
form. Future research involving class-based structures that are
more complicated would clarify such conclusion.

References

[1] Gaines, B.R.: General systems research: quo vadis?, In General

Systems: Yearbook of the Society for General Systems Research
24, 1–9 (1979)

[2] Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An
Ontologically Well-Founded Profile for UML Conceptual Models.
In: Persson, A., Stirna, J. (eds.) Advanced Information Systems
Engineering. CAiSE 2004. LNCS, vol. 3084, pp. 112–126.
Springer, Berlin, Heidelberg (2004)

[3] Dahchour, M., Pirotte, A., Zimányi, E.: Materialization and Its
Metaclass Implementation. IEEE Trans. on Knowledge and Data
Engineering 14(5), 1078–1094 (2002)

[4] Wand, Y., Woo, C., Wand, O.: Role and Request Based
Conceptual Modeling: A Methodology and a CASE Tool. In: Li,
Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) Conceptual
Modeling - ER 2008. LNCS, vol. 5231, pp. 540–541. Springer,
Berlin, Heidelberg (2008)

[5] Motik, B., Maedche, A., Volz, R.: A Conceptual Modeling
Approach for Semantics-Driven Enterprise Applications. In:
Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet
Systems, LNCS, vol. 2519, pp. 1082–1099. Springer, Berlin,
Heidelberg (2002)

[6] Fedora: Object-Oriented Programming. In: Fedora Project.
https://docs.fedoraproject.org/en-
US/Fedora/14/html/Musicians_Guide/sect-Musicians_Guide-
SC-Basic_Programming-Object_Oriented-Object-
Oriented_Programming.html

[7] Pedroni, M., Meyer., B.: Object-Oriented Modeling of Object-
Oriented Concepts: A Case Study in Structuring an Educational
Domain. In: Proceedings of Teaching Fundamental Concepts of
Informatics, 4th International Conference on Informatics in
Secondary Schools - Evolution and Perspectives, ISSEP 2010,
Zurich, Switzerland, January 13-15, 2010. LNCS, vol. 5941, pp.
155–169. Springer, (2010)

[8] OMG, Unified Modeling Language [Online]. Available:
http://www.uml.org [Accessed: Sept. 24, 2010].

[9] Nikiforova, O., Sejans, J., Cernickins, A.: Role of UML Class
Diagram in Object-Oriented Software Development. Applied
Computer Systems 44, 65–74 (2011)

[10] Fowler, M.: UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd Edition, Addison-Wesley Professional,
(2003)

[11] Bennedsen, J., Caspersen, M.E., Kölling, M.: Reflections on the
Teaching of Programming. Springer, Berlin/Heidelberg (2008)

[12] Schreiber, G.: Some Challenge Problems for the Web Ontology
Language. In: University of Amsterdam (no date)
http://www.cs.man.ac.uk/~horrocks/OntoWeb/SIG/challenge-
problems.pdf

[13] Sedrakyan, G., Poelmans, S., Snoeckc, M.: Assessing the
Influence of Feedback-Inclusive Rapid Prototyping on
Understanding the Semantics of Parallel UML Statecharts by
Novice Modellers. Information and Software Technology 82,
159–172 (2017)

[14] Dobing, B., Parsons, J.: Dimensions of UML Diagram Use: A
Survey of Practitioners. IGI Global, CITY (2008)

[15] Burton-Jones, A., Meso, P.: Conceptualizing Systems for
Understanding: An Empirical Test of Decomposition Principles
in Object-oriented Analysis. Information Systems Research,
17(1), 101–114 (2006)

[16] Fowler, M., Scott, K.: UML Distilled: A Brief Guide to the
Standard Object Modeling Language, 2nd Edition. Addison-
Wesley Prof., Reading, Massachusetts (1999)

Fig. 22 Grape and apple (classes) being red (top) and This
grape and this apple (objects) being red (bottom).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.5, May 2021

150

[17] Miles, R., Hamilton, K.: Learning UML 2.0, 1st Edition. O'Reilly
Media, Sebastopol, California (2006)

[18] Halpin, T.: Fact-Orientation before Object-Orientation (Part 1):
The Case for Data Use Cases. Business Rules Community
Newsletter (1999)
http://www.brcommunity.com/a1999/a430.html

[19] Hay, D.C.: Object Orientation and Information Engineering:
UML. In: Reiner, R.S., The Data Administration Newsletter, no.
9 (June 1999), article 5242 at www.tdan.com

[20] Knapp, A., Mossakowski, T.: Multi-view Consistency in UML: A
Survey. In: Graph Transformation, Specifications, and Nets.
LNCS, vol. 10800, pp. 37–60. Springer, Cham (2018)

[21] Al-Fedaghi, S.: Diagrammatic Formalism for Complex Systems:
More than One Way to Eventize a Railcar System. International
Journal of Computer Science and Network Security (IJCSNS)
21(2), 130–141 (2021)

[22] Al-Fedaghi, S.: UML Modeling to TM Modeling and Back.
International Journal of Computer Science and Network Security
(IJCSNS) 21(1), 84–96 (2021)

[23] Al-Fedaghi, S.: Advancing Behavior Engineering: Toward
Integrated Events Modeling. International Journal of Computer
Science and Network Security (IJCSNS) 20(12), 95–107 (2020)

[24] Al-Fedaghi, S.S., BehBehani, M.: Thinging Machine Applied to
Information Leakage. International Journal of Advanced
Computer Science and Applications (IJACSA) 9(9), (2018)

[25] Al-Fedaghi, S., Alrashed, A.: Threat Risk Modeling. In: Second
International Conference on Communication Software and
Networks, Singapore, pp. 405–411, 26-28, Feb. 20 (2010)

[26] Al-Fedaghi, S., Fiedler, G., Thalheim, B.: Privacy Enhanced
Information Systems. The 15th European-Japanese Conference
on Information Modeling and Knowledge Bases: Tallinn, Estonia,
pp. 94-111, 2005.

[27] Al-Fedaghi, S.: Conceptual Temporal Modeling Applied to
Databases, Int. J. Adv. Comput. Sci. Appl. 12(1), 524–534 (2021)

[28] Al-Fedaghi, S.: UML Modeling to TM Modeling and back.
International Journal of Computer Science and Network Security
(IJCSNS) 12(1), 84–96 (2021)

[29] Al-Fedaghi, S., AlSaraf, M.: High-Level Description of Robot
Architecture. Int. J. Adv. Comput. Sci. Appl. 11(10), 258–267
(2020)

[30] Al-Fedaghi, S.: Conceptual Software Engineering Applied to
Movie Scripts and Stories. J. Comput. Sci. Technol. 16(12),
1718–1730 (2020)

[31] Al-Fedaghi, S.: Modeling in Systems Engineering: Conceptual
Time Representation. International Journal of Computer Science
and Network Security (IJCSNS) 21(3), 153–164 (2021)

[32] Pirotte, A., Massart, D.: Integrating Two Descriptions of
Taxonomies with Materialization. Journal of Object Technology
3(5), 143–149 (2004)

[33] Williams, D.C.: On the Elements of Being II. Review of
Metaphysics 7(2), 171–192 (1953)

[34] Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: Why Timed
Sequence Diagrams Require Three-Event Semantics. In: Leue, S.,
Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools.
LNCS, vol. 3466, pp 1–25. Springer, Berlin, Heidelberg (2005)

[35] Ehrich, H.D., Goguen, J.A., Sernadas, A.: A categorical Theory
of Objects as Observed Processes. In: de Bakker, J.W., de Roever,
W.P., Rozenberg, G. (eds.) Foundations of Object-Oriented
Languages. REX 1990. LNCS, vol. 489, pp. 203–228. Springer,
Berlin, Heidelberg (1991)

[36] Guizzardi, G., Masolo, C., Borgo, S.: In Defense of a Trope-
Based Ontology for Conceptual Modeling: An Example with the
Foundations of Attributes, Weak Entities and Datatypes. In:
Embley, D.W., Olivé, A., Ram, S. (eds.) Conceptual Modeling -
ER 2006. LNCS, vol. 4215, pp. 112–125. Springer, Berlin,
Heidelberg (2006)

[37] Pearson (Web site): A Picture Can Save a Thousand Words: UML
Class Diagrams and Java. In: Inform IT site (Aug 30, 2002)
https://www.informit.com/articles/article.aspx?p=29038

[38] Steinhart, E.: Computational Monadology. ResearcGate (1999)
[39] Bell, D.: The Class Diagram: An Introduction to Structure

Diagrams in UML 2. In: IBM Developer (September 15, 2004)
https://developer.ibm.com/technologies/web-
development/articles/the-class-diagram/

[40] Tutorials, The Oracle and Java: Object-Oriented Programming
Concepts. (n.d., accessed May, 11, 2021)
https://docs.oracle.com/javase/tutorial/java/concepts/

[41] Francesco, O., Paoletti, M.P.: Properties. In: Zalta, E.N. (ed.) The
Stanford Encyclopedia of Philosophy (Winter 2020 Edition),
https://plato.stanford.edu/archives/win2020/entries
/properties/

