DOI QR코드

DOI QR Code

Effect of Hooked-end Steel Fiber Volume Fraction and Aspect Ratio on Flexural and Compressive Properties of Concrete

후크형 강섬유 혼입율 및 형상비에 따른 콘크리트의 휨 및 압축 특성

  • 김동휘 (충남대학교 대학원) ;
  • 장석준 (국토안전관리원 건축물관리지원센터) ;
  • 김선우 (충남대학교 건설공학교육과) ;
  • 박완신 (충남대학교 건설공학교육과) ;
  • 윤현도 (충남대학교 건축공학과)
  • Received : 2021.02.09
  • Accepted : 2021.06.21
  • Published : 2021.06.30

Abstract

This study investigates the influence of hooked-end steel fiber volume fraction and aspect ratio on the mechanical properties, such as compressive and flexural performance, of concrete with specified compressive strength of 30MPa. Three types of hooked-end steel fibers with aspect ratios of 64, 67 and 80 were selected. The flexural tests of steel fiber reinforced concrete (SFRC) prismatic specimens were conducted according to EN 14651. The compressive performance of SFRC with different volume fractions (0.25, 0.50 and 0.75%) were evaluated through standard compressive strength test method (KS F 2405). Experimental results indicated that the flexural strength, flexural toughness, fracture energy of concrete were improved as steel fiber volume fraction increases but there is no unique relationship between steel fiber volume fraction and compressive performance. The flexural and compressive properties of concrete incorporating hooked-end steel fiber with aspect ratio of 64 and 80 are a little better than those of SFRC with aspect ratio of 67. For each SFRC mixture used in the study, the residual flexural tensile strength ratio defined in Model Code 2010 was more than the limit value to be able to substitute rebar or welded mesh in structural members with the fiber reinforcement.

이 연구는 후크형 강섬유의 체적비 및 형상비에 따른 콘크리트 설계기준강도 30MPa를 갖는 콘크리트의 역학적 특성, 휨 및 압축거동에 미치는 영향에 대하여 분석한다. 실험에서 형상비가 상이한 3종류의 섬유가 사용되었다. 섬유의 형상비는 64, 67, 80이며 섬유의 보강량은 체적비 0.25%, 0.50% 및 0.75%가 선정되었다. 강섬유 보강 콘크리트의 휨거동은 하중-균열폭 곡선, 휨강도 및 휨인성이 평가되었다, 압축거동은 압축응력-변형률 관계 곡선, 압축강도 및 인성 등이 평가되었다. 실험결과로부터 강섬유 보강 콘크리트의 휨강도, 휨인성 및 파괴에너지는 강섬유 혼입량이 증가됨에 따라 향상되는 것으로 나타났다. 그러나 형상 64와 67인 강섬유로 보강된 콘크리트의 역학적 특성은 큰 차이를 보이지 않았다. 이 연구에서 검토된 강섬유 보강 콘크리트의각 배합에 대한 유럽기준(MC2010)에 의한 산정된 휨 잔여강도는 기준에서 인장 철근 또는 보강 매쉬를 대체할 수 있는 한계기준을 모두 충족하는 것으로 나타났다.

Keywords

Acknowledgement

본논문은 충남대학교 학술연구비에 의해 지원되었습니다.

References

  1. Yoo, D. Y., Yoon, Y. S., & Banthia, N. (2015). Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate. Cement and Concrete Composites, 64, 84-92. https://doi.org/10.1016/j.cemconcomp.2015.10.001
  2. Almusallam, T., Ibrahim, S. M., Al-Salloum, Y., Abadel, A., & Abbas, H. (2016). Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete. Cement and Concrete Composites, 74, 201-217. https://doi.org/10.1016/j.cemconcomp.2016.10.002
  3. Lee, J. H. (2017). Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete. Composite Structures, 168, 216-225. https://doi.org/10.1016/j.compstruct.2017.01.052
  4. Chang, G. I., WK, P., & CW, M. (1993). Flexural fatigue behavior of steel fiber reinforced concrete structures.
  5. Oh, Y. H., Nam, Y. G., & Kim, J. H. (2007). Strength and Ductility of Steel Fiber Reinforced Composite Beams without Shear Reinforcements. Journal of the Korea Concrete Institute, 19(1), 103-111. https://doi.org/10.4334/JKCI.2007.19.1.103
  6. Kal, K. W., Kim, K. S., Lee, D. H., Hwang, J. H., & Oh, Y. H. (2010). Experimental Study on Shear Strength of Steel Fiber Reinforced Concrete Beams. Journal of the Korea institute for structural maintenance and inspection, 14(3), 160-170. https://doi.org/10.11112/jksmi.2010.14.3.160
  7. Kim, M. H., Min, K. H., Yoo, D. Y., & Yoon, Y. S. (2011). Strengthening effect of CFRP sheets and steel fibers for enhancing the impact resistance of RC beams. Journal of The Korean Society of Hazard Mitigation, 11(5), 41-48. https://doi.org/10.9798/KOSHAM.2011.11.5.041
  8. Jeong, G. Y., Jang, S. J., Kim, Y. C., & Yun, H. D. (2018). Effects of steel fiber strength and aspect ratio on mechanical properties of high-strength concrete. J. Korea Conc. Inst, 30, 197-206. https://doi.org/10.4334/JKCI.2018.30.2.197
  9. Koh, K. T., Kang, S. T., Park, J. J., & Ryu, G. S. (2004). A Study on the Improvement of Workability of High Strength Steed Fiber Reinforced Cementitious Composites. Journal of the Korea institute for structural maintenance and inspection, 8(3), 141-148.
  10. Soroushian, P., & Bayasi, Z. (1991). Fiber type effects on the performance of steel fiber reinforced concrete. Materials Journal, 88(2), 129-134.
  11. Lim, D. G., Jang, S. J., Jeong, G. Y., Youn, D., & Yun, H. D. (2019). Effects of Steel Fiber Properties on Compressive and Flexural Toughness of Steel Fiber-Reinforced Concrete. Journal of the Korea institute for structural maintenance and inspection, 23(3), 43-50.
  12. Lee, J. H. (2017). Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete. Composite Structures, 168, 216-225. https://doi.org/10.1016/j.compstruct.2017.01.052
  13. Nataraja, M. C., Dhang, N., & Gupta, A. P. (1999). Stress-strain curves for steel-fiber reinforced concrete under compression. Cement and concrete composites, 21(5-6), 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9
  14. Koksal, F., Sahin, Y., & Sahin, M. (2012). Effect of Steel Fiber Tensile Strength on Mechanical Properties of Steel Fiber Reinforced Concretes. Special Publication, 289, 1-15.
  15. Kang, S. T., Kim, S. W., Park, J. J., & Koh, G. T. (2008). The Effect of Steel Fiber on the Compressive Strength of the High Strength Steel Fiber Reinforced Cementitious Composites. Journal of the Korea institute for structural maintenance and inspection, 12(3), 101-109.
  16. KS F 2403 (2014), Standard Test Method of Making and Curing Concrete Specimens, Korean Standards Association (in Korean).
  17. EN 14651 (2005) Test Method for Metallic Fibered Concrete - Measuring the Flexural Tensile Strength (limit of proportionality (LOP), residual).
  18. KS F 2405 (2010), Standard Test Method for Compressive Strength of Concrete, Korean Standards Association (in Korean).
  19. ASTM C 469 (2002) Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression.
  20. JSCE-SF5 (1984), Method of Tests for Compressive Strength and Compressive Toughness of Steel Fiber Reinforced Concrete, Japan Society of Civil Engineers.
  21. Code, M. (2010). Fib model code for concrete structures 2010. Document Competence Center Siegmar Kastl eK, Germany.