DOI QR코드

DOI QR Code

A Study on Generating Meta-Model to Calculate Weapon Effectiveness Index for a Direct Fire Weapon System

직사화기 무기체계의 무기효과지수 계산을 위한 메타모델 생성방법 연구

  • Received : 2021.03.03
  • Accepted : 2021.04.26
  • Published : 2021.06.30

Abstract

Defense M&S(Modeling & Simulation) requires weapon effectiveness index which indicates Ph(Probability of hit) and Pk(Probability of kill) values on various impact and environmental conditions. The index is usually produced by JMEM(Joint Munition Effectiveness Manual) development process, which calculates Pk based on the impact condition and circular error probable. This approach requires experts to manually adjust the index to consider the environmental factors such as terrain, atmosphere, and obstacles. To reduce expert's involvement, this paper proposes a meta-model based method to produce weapon effectiveness index. The method considers the effects of environmental factors during calculating a munition's trajectory by utilizing high-resolution weapon system models. Based on the result of Monte-Carlo simulation, logistic regression model and Gaussian Process Regression(GPR) model is respectively developed to predict Ph and Pk values of unobserved conditions. The suggested method will help M&S users to produce weapon effectiveness index more efficiently.

개체단위 M&S의 교전 결과에 대한 정확도를 높이기 위해서는 신뢰성 있는 무기효과지수를 바탕으로 피해 정도가 모의되어야 한다. 무기효과지수는 특정 교전 환경에서 무기체계와 표적에 대한 명중확률(Ph)과 살상확률(Pk)을 지수화한 값으로, 주로 JMEM 데이터나 JMEM 방법론에 따라 생산된 데이터가 활용되고 있다. 그러나 JMEM 방법론은 표적 중심부를 기준으로 원형공산오차를 통과하는 파편이나 탄의 격자 통과량으로 살상확률을 계산하기 때문에 지형, 대기, 장애물 등의 추가적인 환경 요소를 고려하기 위해서는 전문가에 의한 보정이 요구된다. 따라서 본 논문에서는 다수의 교전 및 환경요소가 반영된 무기효과지수 생산을 위해 공학급 무기체계 모델을 활용하여 몬테카를로 시뮬레이션을 수행하고, 그 결과 데이터를 바탕으로 메타모델을 생성하였다. 명중확률과 살상확률 메타모델로 로지스틱 회귀모델과 가우시안 프로세스 회귀모델이 각각 생성되었으며, 예시 시나리오에 적용하여 모델 적합도를 관찰하였다. 본 연구에서 제시한 절차를 따르면 개체단위 M&S의 입력자료를 효율적으로 생산할 수 있을 것으로 기대한다.

Keywords

References

  1. Anderson, C.M. (2004), "Generalized Weapon Effectiveness Modeling", Theses of Naval Postgraduate School, Monterey, California.
  2. Choi, Y.H., Lee, K.T., Pyun J.J., and Jang, Y.C. (2017) "A Study on Pk(Probability of Kill) Calculation Method of the Direct Fire Weapon System using Simulation", The Journal of Korea Society for Simulation, Vol. 26(3), 115-123. https://doi.org/10.9709/JKSS.2017.26.3.115
  3. Chulsilp, P., Charubhun, W., and Koanantachai, P. (2014) "Monte Carlo Simulations of Weapon Effectiveness Using Pk Matrix and Carleton Damage Function", International Journal of Applied Physics and Mathematics, Vol. 4, No. 4, 280-285. https://doi.org/10.7763/IJAPM.2014.V4.299
  4. Defense Acquisition Program Administration(DAPA) (2017), M&S Application Manual.
  5. Driels, M.R. (2004) Weaponeering: conventional weapon systems effectiveness, Reston, VA: American Institute of Aeronautics and Astronautics.
  6. Jalal, H., Dowd, B., Sainfort, F., Kuntz, K. M. (2013) "Linear Regression Metamodeling as a Tool to Summarize and Present Simulation Model Results", Medical Decision Making, Vol. 33(7), 880-890. https://doi.org/10.1177/0272989X13492014
  7. Kang, J.-Y., Lee, H.-C, Um, I.-S. (2006) "A Study for Design Optimization of an Automated Distribution Center using the Simulation and Metamodel", The Journal of Korea Society for Simulation, Vol. 15 (3), 103-114.
  8. Kim, J. H. (1996) "Ballistic Computing Program for Direct Fire Weapon-DBCOM", Technical Report of Agency for Defense Development.
  9. Kim, J., Lee, S., Jung, S. (2014) "The Impact of Aircraft Spare Engine and Module Inventory Level on Wartime Operational Availability", Korean Management Science Review, Vol. 31(2), 33-48. https://doi.org/10.7737/KMSR.2014.31.2.033
  10. Lee, K.S. and Kim, H.S. (2013) "Target Geometry Modeling of Vulnerability Analysis", KIMST Annual Conference Proceedings, 1955~1956.
  11. Lee, S. (2020) "Logical Modeling of Base System Model for Tank Engagement Simulation", The Journal of Korea Society for Simulation, Vol. 29 (2), 63-72. https://doi.org/10.9709/JKSS.2020.29.2.063
  12. Lee, S. and Oh, H. (2019) "Verification and Validation of Base System Models for Ground Weapon Systems", Proceedings of Korea Society for Simulation.
  13. Ligetti, C. B., & Simpson, T. W. (2005). "Metamodeldriven design optimization using integrative graphical design interfaces: Results from a job-shop manufacturing simulation experiment", Journal of Computing and Information Science in Engineering, Vol. 5(1), 8-17. https://doi.org/10.1115/1.1794698
  14. Oh, H.-S., Park, S., Kim, H.-J., Lee, T., Lee, S., Kim, D., Paek, O., and Park, J.-H. (2014) "AddSIM: A New Korean Engagement Simulation Environment using High Resolution Models", Proceedings of the Winter Simulation Conference, 2942-2953.
  15. Rasmussen, C.E. & Williams, K.I. (2006) Gaussian Process for Machine Learning, the MIT Press.
  16. Zeinali, F., Mahootchi, M., Sepehri, M.M. (2015) "Resource planning in the emergency departments: A simulation-based metamodeling approach", Simulation Modelling Practice and Theory, Vol. 53, 123-138. https://doi.org/10.1016/j.simpat.2015.02.002