DOI QR코드

DOI QR Code

Elasto-Damage constitutive modelling of recycled aggregate concrete

  • Khalid, Fatima (Department of Civil Engineering, NED University of Engineering & Technology) ;
  • Khan, Asad-ur-Rehman (Department of Civil Engineering, NED University of Engineering & Technology) ;
  • Fareed, Shamsoon (Department of Civil Engineering, NED University of Engineering & Technology)
  • Received : 2021.01.08
  • Accepted : 2021.05.17
  • Published : 2021.07.25

Abstract

In this paper, Elasto-Damage model previously proposed by Khan and Zahra for natural aggregates concrete is reformulated to capture the behavior of recycle aggregate concrete (RAC) subjected to uniaxial compressive stress state. The compressive stress-strain relationship was investigated through existing published data for different recycled coarse aggregate (RCA) with replacement percentages of 0%, 30%, 50%, 70% and 100%. Use of recycled aggregate concrete has been advocated widely to be one of the solution for the global issue of depletion of natural resources while fulfilling the needs of material and structural performance required in reinforced-concrete structures. The adoption of RAC in construction industry requires development of appropriate constitutive models that can be implemented in software based on finite element method to predict the reliable results. The proposed model uses four parameters; 𝛼, 𝛽 and 𝛾 which helps to predict the different behavior of concrete in tension and compression while the fourth parameter critical energy release rate (Rc) controls the damage growth rate. These parameters are defined as a function of concrete compressive strength (f'c) and its initial elastic modulus (Eo). The model is validated through existing test results for uniaxial compressive state of stress and it was concluded that it predicts better post cracking and post peak-behaviour of RAC as compared to the commercially available models for the conventional concrete.

Keywords

Acknowledgement

The authors would like to acknowledge the assistance provided by the Department of Civil Engineering, NED University of Engineering & Technology, Karachi, Pakistan, Pakistan Science Foundation (PSF) through Joint Research Project between NSFC and PSF (PSF/NSFC-Eng/S-NED (05)) and Higher Education Commission (HEC), Pakistan through Research Project (NRPU Project # 6051) for conducting this research work.

References

  1. Bairagi, N.K., Ravande, K. and Pareek, V.K. (1993), "Behaviour of concrete with different proportions of natural and recycled aggregates", Resour. Conserv. Recyc., 9(1), 109-126. http://doi.org/10.1016/0921-3449(93)90036-F.
  2. Belen, G.F., Fernando, M.A., Diego, C.L. and Sindy, S.P. (2011), "Stress-strain relationship in axial compression for concrete using recycled saturated coarse aggregate", Constr. Build. Mater., 25(5), 2335-2342. http://doi.org/10.1016/j.conbuildmat.2010.11.031.
  3. Cai, H., Zhang, M. and Dang, L. (2012), "Experimental study on compressive strength of recycled aggregate concrete with different replacement ratios", Appl. Mech. Mater., 174-177, 1277-1280. http://doi.org/10.4028/www.scientific.net/AMM.174-177.1277.
  4. Casuccio, M., Torrijos, M.C., Giaccio, G. and Zerbino, R. (2008), "Failure mechanism of recycled aggregate concrete", Constr. Build. Mater., 22(7), 1500-1506. http://doi.org/10.1016/j.conbuildmat.2007.03.032.
  5. Chakradhara Rao, M., Bhattacharyya, S.K. and Barai, S.V. (2011), "Influence of field recycled coarse aggregate on properties of concrete", Mater. Struct., 44(1), 205-220. http://doi.org/10.1617/s11527-010-9620-x.
  6. Deng, Z., Liu, B., Ye, B. and Xiang, P. (2020), "Mechanical behavior and constitutive relationship of the three types of recycled coarse aggregate concrete based on standard classification", J. Mater. Cycl. Waste Mangem., 22(1), 30-45. http://doi.org/10.1007/s10163-019-00922-5.
  7. Dhir, R.K., Limbachiya, M. and Leelawat, T. (1999), "Suitability of recycled concrete aggregates for use in bs 5328 designated mixes", Proc. Inst. Civil Eng.-Struct. Build., 134(3), 257-274. https://doi.org/10.1680/istbu.1999.31568
  8. Dillmann, R., Dhir, R.K., Henderson, N A. and Limbachiya, M.C. (1998), "Concrete with recycled concrete aggregate", Proceedings of International Symposium on Sustainable Construction: Use of Recycled Concrete Aggregate, University of Dundee, Scotland.
  9. Domingo-Cabo, A., Lazaro, C., Lopez-Gayarre, F., Serrano-Lopez, M.A., Serna, P. and Castano-Tabares, J.O. (2009), "Creep and shrinkage of recycled aggregate concrete", Constr. Build. Mater., 23(7), 2545-2553. http://doi.org/10.1016/j.conbuildmat.2009.02.018.
  10. Etxeberria, M., Mari, A.R. and Vazquez, E. (2007), "Recycled aggregate concrete as structural material", Mater. Struct., 40(5), 529-541. http://doi.org/10.1617/s11527-006-9161-5.
  11. Etxeberria, M., Vazquez, E., Mari, A. and Barra, M. (2007), "Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete", Cement Concrete Res., 37(5), 735-742. http://doi.org/10.1016/j.cemconres.2007.02.002.
  12. Evangelista, L. and de Brito, J. (2007), "Mechanical behaviour of concrete made with fine recycled concrete aggregates", Cement Concrete Compos., 29(5), 397-401. http://doi.org/10.1016/j.cemconcomp.2006.12.004.
  13. Folino, P., Xargay, H. and Vega, V. (2013), "Constitutive model for recycled aggregate concrete", Mecanica Comput., 32(4), 307-317.
  14. Golpasand, G.B., Farzam, M. and Shishvan, S.S. (2020), "FEM investigation of SFRCs using a substepping integration of constitutive equations", Comput. Concrete, 25(2), 181-192. http://doi.org/10.12989/cac.2020.25.2.181.
  15. Gomez-Soberon, J.M.V. (2002), "Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study", Cement Concrete Res., 32(8), 1301-1311. http://doi.org/10.1016/S0008-8846(02)00795-0.
  16. Gonzalez-Fonteboa, B., Martinez-Abella, F., Eiras-Lopez, J. and Seara-Paz, S. (2011), "Effect of recycled coarse aggregate on damage of recycled concrete", Mater. Struct., 44(10), 1759-1771. http://doi.org/10.1617/s11527-011-9736-7.
  17. Grassl, P., Xenos, D., Nystrom, U., Rempling, R. and Gylltoft, K. (2013), "CDPM2: A damage-plasticity approach to modelling the failure of concrete", Int. J. Solid. Struct., 50(24), 3805-3816. http://doi.org/10.1016/j.ijsolstr.2013.07.008.
  18. Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M.S.B. and Karimzade, K. (2017), "Simplified damage plasticity model for concrete", Struct. Eng. Int., 27(1), 68-78. http://doi.org/10.2749/101686616X1081.
  19. Hu, X., Lu, Q. and Cheng, S. (2019), "Uniaxial damaged plastic constitutive relation of recycled aggregate concrete", Adv. Mater. Sci. Eng., 2019, Article ID 2982195. http://doi.org/10.1155/2019/2982195.
  20. Kataoka, M.N., El Debs, A.L.H., Araujo, D.D.L. and Martins, B.G. (2020), "Computer modeling and analytical prediction of shear transfer in reinforced concrete structures", Comput. Concrete, 26(2), 151-159. https://doi.org/10.12989/cac.2020.26.2.151.
  21. Khan, A.R., Al-Gadhib, A.H. and Baluch, M.H. (2007), "Elasto-damage model for high strength concrete subjected to multiaxial loading", Int. J. Damage Mech., 16. http://doi.org/10.1177/1056789506065914.
  22. Khan, A.R., Fareed, S. and Khan, M.S. (2019), "Use of recycled concrete aggregates in structural concrete", Sust. Const. Mater. Tech., 2. http://doi.org/10.18552/2019/idscmt5078.
  23. Khan, A.R. and Zahra, T. (2019), "Elasto-damage modeling of concrete subjected to proportionate and non-proportionate multiaxial state of stress", J. Mech. Continua Math. Sci., 14(2), 7-26. http://doi.org/10.26782/jmcms.2019.04.00002.
  24. Khan, M.S., Fareed, S. and Xiao, J. (2019), "Structural behaviour and strength prediction of recycled aggregate concrete beams", Arab. J. Sci. Eng., 45(5), 3611-3622. http://doi.org/10.1007/s13369-019-04195-w.
  25. Khan, M.W. and Ali, Y. (2020), "Sustainable construction Lessons learned from life cycle assessment (LCA) and life cycle cost analysis (LCCA)", Constr. Innov., 20(2), 191-207. http://doi.org/10.1108/CI-05-2019-0040.
  26. Kral, P., Hradil, P. and Kala, J. (2018), "Evaluation of constitutive relations for concrete modeling based on an incremental theory of elastic strain-hardening plasticity", Comput. Concrete, 22(2), 227-237. https://doi.org/10.12989/cac.2018.22.2.227.
  27. Malik, S. and Wahid, J. (2014), "Rapid urbanization: problems and challenges for adequate housing in Pakistan", J. Socio. Social Work, 2(2), 87-110. http://doi.org/10.15640/jssw.v2n2a6.
  28. Martinez-Lage, I., Martinez-Abella, F., Vazquez-Herrero, C. and Perez-Ordonez., J.L. (2012), "Properties of plain concrete made with mixed recycled coarse aggregate", Constr. Build. Mater., 37, 171-176. http://doi.org/10.1016/j.conbuildmat.2012.07.045.
  29. Mellmann, G., Meinhold, U. and Maultzsch, M. (1999), "Processed concrete rubble for the reuse as aggregates", Exploiting Wastes in Concrete, 171-178. http://doi.org/doi:10.1680/ewic.28210.0016.
  30. Montuori, R., Nastri, E., Palese, M.I. and Piluso, V. (2019), "Comparison among different software for the evaluation of moment-curvature of RC columns", Comput. Concrete, 24(3), 259-269. http://doi.org/10.12989/cac.2019.24.3.259.
  31. Onate, E., Oller, S., Oliver, J. and Lubliner, J. (1988), "A constitutive model for cracking of concrete based on the incremental theory of plasticity", Eng. Comput., 5(4), 309-319. https://doi.org/10.1108/eb023750.
  32. Owen, D.R.J. and Hinton, E. (1980), Finite Elements Plasticity: Theory and Practice, Pineridge Press Limited, Swansea, UK.
  33. Peng, C. and Guner, S. (2018), "Direct displacement-based seismic assessment of concrete frames", Comput. Concrete, 21(4), 355-365. https://doi.org/10.12989/cac.2018.21.4.355.
  34. Purushothaman, R., Amirthavalli, R.R. and Karan, L. (2015), "Influence of treatment methods on the strength and performance characteristics of recycled aggregate concrete", J. Mater. Civil Eng., 27(5), 04014168. http://doi.org/10.1061/(ASCE)MT.1943-5533.0001128.
  35. Qi, H., Li, T., Liu, X., Zhao, L., Lin, C. and Fan, S. (2020), "A variable parameters damage model for concrete", Eng. Fract. Mech., 228, 106898. http://doi.org/10.1016/j.engfracmech.2020.106898.
  36. Rahmani, A.A., Chemrouk, M. and Ammar-Boudjelal, A. (2020), "Rheological, physico-mechanical and durability properties of multi-recycled concrete", Adv. Concrete Constr., 9(1), 9-22. http://doi.org/10.12989/acc.2020.9.1.009.
  37. Ravindrarajah, R.S. and Tam, C.T. (1985), "Properties of concrete made with crushed concrete as coarse aggregate", Mag. Concrete Res., 37(130), 29-38. http://doi.org/10.1680/macr.1985.37.130.29.
  38. Ray, S. (2020), Fortran 2018 with Parallel Programming, CRC Press, Boca Raton, Florida, USA.
  39. Sauris, W., Ouyang, C. and Fernando, V. M. (1990), "Damage model for cyclic loading of concrete", J. Eng. Mech., 116(5), 1020-1035. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:5(1020)
  40. Shohana, S.A., Hoque, M.I. and Sobuz, M.H.R. (2020), "Experimental investigation on hardened properties of recycled coarse aggregate concrete", Adv. Concrete Constr., 10(5), 369-379. http://doi.org/10.12989/acc.2020.10.5.369.
  41. Sucharda, O. and Konecny, P. (2018), "Recommendation for the modelling of 3D non-linear analysis of RC beam tests", Comput. Concrete, 21(1), 11-20. https://doi.org/10.12989/cac.2018.21.1.011.
  42. Statistics, P.B. (2018), Pakistan Bureau of Statistics, 6th Population and Housing Census.
  43. Thongkamsuk, P., Sudasna, K. and Tondee, T. (2017), "Waste generated in high-rise buildings construction: a current situation in Thailand", Energy Procedia, 138, 411-416. https://doi.org/10.1016/j.egypro.2017.10.186.
  44. Ting, D., Weihong, W., Zhongxin, L., Lin, H. and Guo, T. (2010), "The complete stress-strain curve of recycled aggregate concrete under uniaxial compression loading", J. Wuhan Uni. Tech. Mater. Sci. Edit., 25(5), 862-865. http://doi.org/10.1007/s11595-010-0109-9.
  45. Turkyilmaz, A., Guney, M., Karaca, F., Bagdatkyzy, Z., Sandybayeva, A. and Sirenova, G. (2019), "A comprehensive construction and demolition waste management model using PESTEL and 3R for construction companies operating in central Asia", Sustain., 11(6), 1593. http://doi.org/10.3390/su11061593.
  46. UNEP, I. (2015), Global Waste Management Outlook; United Nations Environment Programme, Vienna, Austrailia.
  47. Wang, C. and Xiao, J. (2019), "Material modeling in the dynamic nonlinear analysis for recycled aggregate concrete structures", J. Earthq. Eng., 23(5), 837-862. http://doi.org/10.1080/13632469.2017.1342300.
  48. Wang, Y., Zhang, H., Geng, Y., Wang, Q. and Zhang, S. (2019), "Prediction of the elastic modulus and the splitting tensile strength of concrete incorporating both fine and coarse recycled aggregate", Constr. Build. Mater., 215, 332-346. http://doi.org/10.1016/j.conbuildmat.2019.04.212.
  49. World Bank Group. World Bank: Population, Total|Data. 2018. (2018), Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL?end=2017&locations=CN&start=2017&view=bar.
  50. Xiao, J., Huang, Y., Yang, J. and Zhang, C. (2012), "Mechanical properties of confined recycled aggregate concrete under axial compression", Constr. Build. Mater., 26(1), 591-603. http://doi.org/10.1016/j.conbuildmat.2011.06.062.
  51. Xiao, J., Li, J.B. and Zhang, C. (2006), "On relationships between the mechanical properties of recycled aggregate concrete: An overview", Mater. Struct., 39(6), 655-664. http://doi.org/10.1617/s11527-006-9093-0.
  52. Xiao, J., Li, J. and Zhang, C. (2005), "Mechanical properties of recycled aggregate concrete under uniaxial loading", Cement Concrete Res., 35(6), 1187-1194. http://doi.org/10.1016/j.cemconres.2004.09.020.
  53. Xiao, J., Li, W., Fan, Y. and Huang, X. (2012), "An overview of study on recycled aggregate concrete in China (1996-2011)", Constr. Build. Mater., 31, 364-383. http://doi.org/10.1016/j.conbuildmat.2011.12.074.
  54. Xiao, J., Sun, Y. and Falkner, H. (2006b), "Seismic performance of frame structures with recycled aggregate concrete", Eng. Struct., 28(1), 1-8. http://doi.org/10.1016/j.engstruct.2005.06.019.
  55. Zhu, X., Chen, X., Shen, N., Tian, H., Fan, X. and Lu, J. (2018), "Mechanical properties of pervious concrete with recycled aggregate", Comput. Concrete, 21(6), 623-635. http://doi.org/10.12989/cac.2018.21.6.623.
  56. Zhou, C. and Chen, Z. (2017), "Mechanical properties of recycled concrete made with different types of coarse aggregate", Constr. Build. Mater., 134(1), 497-506. http://dx.doi.org/10.1016/j.conbuildmat.2016.12.163.