DOI QR코드

DOI QR Code

Copper and nickel removal from plating wastewater in the electrodialysis process using a channeled stack

  • Min, Kyung Jin (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Kim, Joo Hyeong (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Kim, Sun Wouk (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Lee, Seunghyun (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Shin, Hyun-Gon (Department of Energy and Environmental Engineering, Shinhan University) ;
  • Park, Ki Young (Department of Civil and Environmental Engineering, Konkuk University)
  • Received : 2020.12.30
  • Accepted : 2021.05.03
  • Published : 2021.07.25

Abstract

Electrodialysis (ED) is an advanced separation process used to treat industrial wastewater using potential differences. In this study, flow rates within the stack were increased by creating a flow channel to increase the limiting current density (LCD). Increasing the flow rate within the stack increases the diffusion flux, which leads to an increase in LCDs. Experiments show that the applied voltage of the flow-accelerated stack was improved by 12.2% compared to the stack without a flow channel, but the LCD decreased by 3.6%. The removal efficiency of both copper and nickel between the two stacks was greater than 95.6%, with no significant difference. However, the concentration rate of ions was superior in the stack without a flow channel. This may be attributed to the fact that the applied voltage increases when the channel is attached, resulting in differences in the separation rate and the resulting concentration polarization. In terms of the current efficiency, the channel-less stack was found to be 42.5% better than the channeled stack. It would be desirable to apply voltages below the LCDs as those exceeding LCDs at the same membrane flow rate would significantly reduce the economic feasibility.

Keywords

Acknowledgement

This study was supported by the Konkuk University Researcher Fund in 2020. This research was financially supported by the Korea Ministry of Environment as Waste to Energy-Recycling Human Resource Development Project and the Human Resource Program (Grant No. 20194010201790) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea.

References

  1. Akbal, F. and Camci, S. (2011), "Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation", Desalination, 269(1-3), 214-222. https://doi.org/10.1016/j.desal.2010.11.001.
  2. Bernardes, A.M., Rodrigues, M.A.S. and Ferreira J.Z. (2016), Electrodialysis and Water Reuse, (1st Edition), Springer-Verlag, Berlin, Germany.
  3. Fu, F. and Wang, Q. (2011), "Removal of heavy metal ions fr om wastewaters: A review", J. Environ. Manage., 92, 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011.
  4. Galvanin, F., Marchesini, R., Barolo, M., Bezzo, F. and Fidaleo, M. (2016). "Optimal design of experiments for parameter identification in electrodialysis models", Chem. Eng. Res. Des., 105, 107-119. https://doi.org/10.1016/j.cherd.2015.10.048.
  5. Geise, G.M., Curtis, A.J., Hatzell, M.C., Hickner, M.A. and Logan, B.E. (2014), "Salt concentration differences alter membrane resistance in reverse electrodialysis stacks", Environ. Sci. Technol., 1(1), 36-39. https://doi.org/10.1021/ez4000719.
  6. Gherasim, C.V., Krivcik, J. and Mikulasek. P. (2014), "Investigation of batch electrodialysis process for removal of lead ions from aqueous solutions", Chem. Eng. J., 256(15), 324-334. https://doi.org/10.1016/j.cej.2014.06.094Get.
  7. Gurreri, L., Tamburini, A., Cipollina, A. and Micale, G. (2012), "CFD analysis of the fluid flow behavior in a reverse electrodialysis stack", Desalin. Water Treat., 48(1), 390-403. https://doi.org/10.1080/19443994.2012.705966.
  8. Ibanez Mengual, J.A., Valerdi Perez, R. and Carbonell Bejerano, F. (2015), "Characterization of an electrodialytic cell: Automation and process control", Desalin. Water Treat., 56(13), 3654-3664. https://doi.org/10.1080/19443994.2014.991947.
  9. Ji, Z.Y., Chen, Q.B., Yuan, J.S., Liu, J., Zhao, Y.Y. and Feng, W.X. (2017), "Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis", Sep. Purif. Technol. 172, 168-177. https://doi.org/10.1016/j.seppur.2016.08.006.
  10. Jia, Y.X., Li, F.J., Chen, X. and Wang, M. (2018), "Model analysis on electrodialysis for inorganic acid recovery and its experimental validation", Sep. Purif. Technol., 190, 261-267. https://doi.org/10.1016/j.seppur.2017.08.067.
  11. Kanavova, N. and Machuca, L. (2014), "A novel method for limiting current calculation in electrodialysis modules", Period. Polytech. Chem. Eng., 58(2), 125-130. https://doi.org/10.3311/PPch.7145.
  12. Koutsou, C.P., Yiantsios, S.G. and Karabelas, A.J. (2007), "Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics", J. Membr. Sci., 291(1-2), 53-69. https://doi.org/10.1016/j.memsci.2006.12.032.
  13. La Cerva, M., Gurreri, L., Tedesco, M., Cipollina, A., Ciofalo, M., Tamburini, A. and Micale, G. (2018), "Determination of limiting current density and current efficiency in electrodialysis units", Desalination, 445, 138-148. https://doi.org/10.1016/j.desal. 2018.07.028.
  14. Lee, H.J., Strathmann, H. and Moon, S.H. (2006), "Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocity", Desalination, 190, 43-50. https://doi.org/10.1016/j.desal.2005.08.004.
  15. Lee, C.G., Lee, S., Park, J.A., Park, C., Lee, S.J., Kim, S.B., An, B., Yun, S.T., Lee, S.H. and Choi, J.W. (2017), "Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam", Chemosphere, 166, 203-211. https://doi.org/10.1016/j.chemosphere.2016.09.093.
  16. Lee, H., Sarfert, F., Strathmann, H. and Moon, S. (2002), "Designing of an electrodialysis desalination plant", Desalination, 142, 267-286. https://doi.org/10.1016/S0011-9164(02)00208-4.
  17. Malamis, S., Katsou, E., Kosanovic, T. and Haralambous, K.J. (2012), "Combined adsorption and ultrafiltration processes employed for the removal of pollutants from metal plating wastewater", Sep. Sci. Technol., 47(7), 983-996. https://doi.org/10.1080/01496395.2011.645983.
  18. Mareev, S.A., Butylskii, D.Y., Pismenskaya, N.D., Larchet, C., Dammak, L. and Nikonenko, V.V. (2018), "Geometric heterogeneity of homogeneous ion-exchange Neosepta membranes", J. Membr. Sci., 563, 768-776. https://doi.org/10.1016/ j.memsci.2018.06.018.
  19. Min, K.J., Choi, S.Y., Jang, D., Lee, J. and Park, K.Y. (2019), "Separation of metals from electroplating wastewater using electrodialysis", Energ. Source Part A, 41(20), 2471-2480. https://doi.org/10.1080/15567036.2019.1568629.
  20. Min, K.J., Oh, E.J., Kim, G., Kim, J.H., Ryu, J.H. and Park, K.Y. (2020), "Influence of linear flow velocity and ion concentration on limiting current density during electrodialysis", Desalin. Water Treat., 175, 334-340. https://doi.org/10.5004/dwt.2020.24663.
  21. Min, K.J., Kim, J.H. and Park, K.Y. (2021a), "Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment", Sci. Total Environ., 757, 143762. https://doi.org/10.1016/j.scitotenv.2020.143762.
  22. Min, K.J., Kim, J.H., Oh, E.J., Ryu, J.H. and Park, K.Y. (2021b), "Flow velocity and cell pair number effect on current efficiency in plating wastewater treatment through electrodialysis", Environ. Eng. Res., 26(2), 190502. https://doi.org/10.4491/eer.2019.502.
  23. Nakayama, A., Sano, Y., Bai, X. and Tado, K. (2017), "A boundary layer analysis for determination of the limiting current density in an electrodialysis desalination", Desalination, 404, 41-49. https://doi.org/10.1016/j.desal.2016.10.013.
  24. Nebavskaya, K.A., Sarapulova, V.V., Sabbatovskiy, K.G., Sobolev, V.D., Pismenskaya, N.D., Sistat, P., Cretin, M, and Nikonenko, V.V. (2017), "Impact of ion exchange membrane surface charge and hydrophobicity on electroconvection at underlimiting and overlimiting currents" J. Membr. Sci., 523, 36-44. https://doi.org/10.1016/j.memsci.2016.09.038.
  25. Nikonenko, V.V., Pis'menskaya, N.D., Istoshin, A.G., Zabolotskii, V.I. and Shudrenko, A.A. (2007), "Generalization and prognostication of mass exchange characteristics of electrodialyzers operating in overlimiting current regimes with use made of similarity theory and compartmentation method", Russ. J. Electrochem., 43(9), 1069-1081. https://doi.org/10.1134/S102319350709011X.
  26. O'Connell, D.W., Birkinshaw, C. and O'Dwyer, T.F. (2008), "Heavy metal adsorbents prepared from the modification of cellulose: A review", Bioresource Technol., 99(15), 6709-6724. https://doi.org/10.1016/j.biortech.2008.01.036.
  27. Oh, E., Kim, J., Ryu, J.H., Min, K.J., Shin, H.G. and Park, K.Y. (2020), "Influence of counter anions on metal separation and water transport in electrodialysis treating plating wastewater", Membr. Water Treat., 11(3), 201-206. http://doi.org/10.12989/sem.2020.11.3.201.
  28. Pismenskaya, N.D., Nikonenko, V.V., Melnik, N.A., Shevtsova, K.A., Belova, E.I., Pourcelly, G., Cot, D., Dammak, L. and Larchet, C. (2012), "Evolution with time of hydrophobicityand microrelief of a cation-exchange membrane surface and its impact on over-limiting mass transfer", J. Phys. Chem. B, 116, 2145-2161. https://doi.org/10.1021/jp2101896.
  29. Scarazzato, T., Buzzi, D.C., Bernardes, A.M., Tenorio, J.A.S. and Espinosa, D.C.R. (2015), "Current-voltage curves for treating effluent containing HEDP: Determination of the limiting current", Braz. J. Chem. Eng., 32(4), 831-836. https://doi.org/10.1590/0104-6632.20150324s00003511.
  30. Silva, V., Poiesz, E. and Van der Heijden, P. (2013), "Industrial wastewater desalination using electrodialysis: Evaluation and plant design", J. Appl. Electrochem., 43(11), 1057-1067. https://doi.org/10.1007/s10800-013-0551-4.
  31. Strathmann, H. (2010), "Electrodialysis, a mature technology with a multitude of new applications", Desalination, 264(3), 268-288. https://doi.org/10.1016/j.desal.2010.04.069.
  32. Tedesco, M., Cipollina, A., Tamburini, A., van Baak, W. and Micale, G. (2012), "Modelling the Reverse ElectroDialysis process with seawater and concentrated brines", Desalin. Water Treat., 49(1), 404-424. https://doi.org/10.1080/19443994.2012.699355.
  33. Van der Bruggen, B., Koninckx, A. and Vandecasteele. C. (2004), "Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration", Water Res., 38(5), 1347-1353. https://doi.org/10.1016/j.watres.2003.11.008.
  34. Veerman, J., Saakes, M., Metz, S.J. and Harmsen, G.J. (2011), "Reverse electrodialysis: A validated process model for design and optimization", Chem. Eng. J., 166(1), 256-268. https://doi.org/10.1016/j.cej.2010.10.071.
  35. Wang, X., Nie, Y., Zhang, X., Zhang, S. and Li, J. (2012), "Recovery of ionic liquids from dilute aqueous solutions by electrodialysis", Desalination, 285, 205-212. https://doi.org/10.1016/j.desal. 2011.10.003.
  36. Zhang, Y., Paepen, S., Pinoy, L., Meesschaert, B. and Van der Bruggen, B. (2012), "Selectrodialysis: Fractionation of divalent ions from monovalent ions in a novel electrodialysis stack", Sep. Purif. Technol., 88, 191-201. https://doi.org/10.1016/j.seppur.2011.12.017.
  37. Zhang, Y.H., Liu, F.Q., Zhu, C.Q., Zhang, X.P., Wei, M.M., Wang, F.H., Ling, C. and Li, A.M. (2017). "Multifold enhanced synergistic removal of nickel and phosphate by a (N, Fe)-dual-functional bio-sorbent: Mechanism and application", J. Hazard. Mater., 329, 290-298. https://doi.org/10.1016/j.jhazmat.2017.01.054.