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Summary 
Deep learning is an advanced technology for large-scale data 
analysis, with numerous promising cases like image processing, 
object detection and significantly more. It becomes customarily to 
use transfer learning and fine-tune a pre-trained CNN model for 
most image recognition tasks. Having people taking photos and 
tag themselves provides a valuable resource of in-data. However, 
these tags and labels might be noisy as people who annotate these 
images might not be experts. This paper aims to explore the impact 
of noisy labels on fine-tuning pre-trained CNN models. Such 
effect is measured on a food recognition task using Food101 as a 
benchmark. Four pre-trained CNN models are included in this 
study: InceptionV3, VGG19, MobileNetV2 and DenseNet121. 
Symmetric label noise will be added with different ratios. In all 
cases, models based on DenseNet121 outperformed the other 
models. When noisy labels were introduced to the data, the 
performance of all models degraded almost linearly with the 
amount of added noise.  
Keywords: 
deep learning, food image detection, symmetric label noise, 
convolutional neural networks, transfer learning. 

1. Introduction 

Healthy diets are essential for human health. In the 
current time, people have increased awareness of the 
importance of a healthy diet. As a result, automatic 
recognition systems for drinks and foods have appeared. 
These systems recognise the components of the drink or 
food and estimate their nutritional value to help evaluate the 
diet. The group benefiting from these systems is significant, 
including patients with dietary restrictions and people who 
follow a diet [1]. 

Several factors make detecting images of food and drink 
difficult. Among them, foods are usually deformable 
objects, and thus it is difficult to determine the type of food 
in the image. Besides, some food items may have a high 
intra-class variance but a low inter-class variance [2]. In 
other words, objects of the same food category look very 
different but resemble other items from different categories. 
Consequently, detecting a food category for such items 
become challenging.  

Previously, machine learning was active in many areas 
and worked effectively for data processing; however, it 
cannot analyse raw data because it usually needs to be 

supplemented with a manual feature extraction method. 
Through advancements in hardware computing capacity 
and storage space, machine learning capabilities can be 
enhanced by adding more complex structures to represent 
unstructured data with deep models. Due to the strong 
learning ability of the deep learning method in regression 
and classification, solving many complex problems become 
quick and effective. However, it requires a sufficient 
amount of data for the required problem. For example, due 
to the powerful feature of automatic learning features, deep 
learning is applied in the food domain to classify a food 
category to discover its quality and estimate the number of 
food calories. Convolutional Neural Networks (CNNs) are 
currently considered one of the most common deep models 
used in analysing big data in various fields of computer 
vision research [3].  

CNNs are the type of deep neural networks inspired by 
the visual cortex of animals as these individual neurons 
interact with the overlapping regions of the visual field. 
Consequently, CNN becomes suitable for computer vision 
because the goal of computer vision is similar to animal 
vision: gaining an understanding of interfering images [4]. 
Furthermore, we implemented CNN in this paper because it 
can ignore surrounding noise for label noise with enough 
training data, because of its high classification accuracy and 
learn optimal features from images adaptively; thus, this 
suitable for our research type. Moreover, CNN can be 
trained by the way that it can detect objects in the same 
network [5, 6].  

This research implemented four fine-tuned pre-trained 
CNN models on the Food-101 data set with different ratios 
of added label noise. Also, it experimented with different 
architectures using two types of optimisers at different 
learning rates. 

The rest of this paper is ordered as follows. Section 2 
reviews the related literature on the subject and similar 
previous attempts. Then, the Food-101 data set is described 
in Section 4. An overview of the pre-trained models used in 
this study and how they were fine-tuned is presented in 
Section 3. Section 5 describes this study's experimental 
design and configurations with the results its discussion in 
Section 6. Finally, this study is concluded in Section 7 with 
a brief direction for future work. 
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2. Related Work 

The reviewed literature can be grouped into two collections: 
food detection using deep models and training models using 
noisy labels. 

2.1 Food Detection using Deep Models 

In 2019, Zhou et al. [7] reviewed most of the problems 
addressed by machine learning researchers in the food 
domain. Their survey found that deep learning models were 
more effective than other methods like traditional machine 
learning algorithms and manual feature extractors.  

In 2014, Kagaya et al. [8] applied CNN model to 
distinguish food images from non-food ones. They used two 
data sets: ImageNet [9] and a collection of food images 
collected from the food-logging app. They experimented 
with different depth of CNN, between 2 to 4, and found that 
a two-layer CNN architecture outperformed the rest with an 
accuracy of 93.8%. They also found that food colours 
dominate food recognition.  

In 2018, Heravi et al. [10] proposed the ConvNet system 
to reduce the number of parameters used in training while 
maintaining high accuracy and was tested on two real-world 
datasets UECFood-256 and Food-101. This system gave 
high results compared to ConvNet, AlexNet, GoogLeNet, 
VGGNet, but it is close to the efficiency of ResNet50. 

In 2016, Wu et al. [11] proposed an error improvement 
system to be closer to correct by adding hierarchical 
semantic relationships to CNN. The proposed method has 
been tested with GoogLeNet model on two datasets: Food- 
101 and 5-Chain menu from popular restaurants. This 
system improved the results and reduced loss function.  

In 2017, Pandey et al.[12] proposed a system to identify 
the meal's contents called Ensemble Net, which combines 
the outputs of three Pre-trained models GoogLeNet and 
AlexNet and ResNet. They applied this system to two sets 
of data from the real world. They found that it outperforms 
many other methodologies. 

In 2016, Liu et al. [13] proposed a system to enhance the 
accuracy of dietary assessment by analysing the food 
images captured by mobile devices. They proposed CNN-
based algorithms with optimisations, and they applied them 
to two real-world food image datasets. Their results proved 
that the proposed approach is a promising solution for the 
food image classification problem. 

In 2017, Liu et al.[14] proposed a system for identifying 
food and helping with dietary assessment by capture photos 
by mobile, cleaning them, pre-processing them, and then 
analysing them using CNN models-Inception. They applied 
this system to two data sets, Food-101 and a UEC data set. 
They found that this system gave high results compared to 
their other proposed system in [13]. 

In 2020, Ramdani et al. [15] proposed a food detection 
system by using CNN to help to automate the estimation of 
food price. They used 480 for fine-tuning with 80% of the 
data for fine-tuning and 20% for testing. Their system can 
classify six types of food and achieve an accuracy of 100% 
for the six types and with 10 seconds of detection time. 

In 2018 Zheng et al.[16] proposed a new framework 
depending on two approaches: the mid-level and deep CNN 
approach for food image recognition using three datasets. 
The researchers faced difficulty while training the model of 
CNN with the unlabeled mid-level parts data. They solved 
this problem by designing a clustering-based FP label 
mining scheme that used unlabeled data to generate part-
level labels. The proposed approach achieved excellent 
accuracy when comparing it with other methods. 

Table 1 
Performance of previous work using deep models on Food-101 data set. Top-1 and Top-5 are accuracy scores for the model when considering the first 

predicted class or top five classes; respectively. 

Reference #Class Additional data 
Data 

Augment. Pretrained models Top-1 Top-5 
Heravi et al. [10] 

101 
UECFood-256 Yes ConvNet, AlexNet, 

GoogLeNet, VGG, ResNet 
65.40% 87.00% 

Yanai and Kawano [19] 100 Twitter photo data Yes - 70.40% -- 

Wu et al. [11] 101 5-Chain No GoogLeNet 72.10% -- 

Pandey et al. [12] 101 IndianFood No GoogleNet, AlexNet, ResNet 72.10% 91.60% 

Liu et al [13] 101 -- No GoogLeNet 77.40% 93.70% 

Liu et al [14] 101 UEC dataset No Inception 77.00% 94.00% 

Fu et al. [20] 100/256/101 UEC100, UEC256 Yes - 78.50% 94.10% 

Ciocca et al. [21] 1200 UNICT-FD1200 No ResNet-50 82.50% 95.80% 

Zheng et al. [16] 101 UECFood-256 No AlexNet, InceptionV3 88.00% -- 

Hassannejad et al. [17] 
101 

UECFOOD100, 
UECFOOD256 

No InceptionV3 88.30% 96.90% 

Martinel et al. [18] 
101 

UECFOOD100, 
UECFOOD256 

Yes - 90.30% 98.70% 
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In 2016 Hassannejad et al. [17] introduced a pre-trained 
model of deep CNN called Inception V3. They used three 
kinds of dataset: ETH Food-101, UEC FOOD 100, and 
UEC FOOD 256. They achieved 88.28%, 81.45%, and 
76.17% respectively for top-1 accuracy and 96.88%, 
97.27%, and 92.58% for the top-5 accuracy. 

Another research for food recognition in 2018 was 
proposed by Martinel et al. [18] depending on deep neural 
network (DNN) with two primary branches: the residual 
and slice networks. They used three datasets which were: 
UECFood100, UECFood256 and Food-101. This wide slice 
residual network (WISer) architecture achieved a good 
performance compared to other existing architectures.  

In 2015, Yanai and Y. Kawano.[19] studied the efficacy 
of using the deep CNN to detect food images on two 
datasets: UEC-FOOD100 and UEC-FOOD256. They use 
different techniques like pre-training with ImageNet data, 
fine-tuning and extract features from the pre-trained CNN. 
The result has shown the effectiveness of DCNN for large-
scale image data by 78.77% and 67.57% accuracy for the 
UEC-FOOD100/256 datasets.  

In 2017, Z. Fu, D. Chen, and H. Li.[20] introduced the 
baseline approach, it is a robust deep network for food 
images. The method implemented on ChinFood1000 along 
evaluated on three famous datasets: UEC100, UEC256, 
Food-101. All results prove the effectiveness of their 
approach. 

As this work uses the Food-101 data set, Table 1 
summarises all the previous studies that use this data set for 
food detection and classification tasks.  

2.2 Noisy Label 

Several studies have been investigating overcoming the 
noisy label issue when training deep models. These studies 
have attempted to make the models robust to noise in labels 
or de-noise the data set before the training. Of the former 
set of studies, Li et al. [22] proposed an approach called 
Cyclic Annealing Training (CAT) which can speed up the 
CNN training in every M-step by utilising a fast annealing 
training method. Thus, it reduces the training time and 
improves the performance of the image classification. CAT 
uses three kinds of datasets: MNIST, CIFAR-10 and 
CIFAR-applies under different noisy labels pattern; 46% of 
noisy labels on the MNIST dataset randomly flip the labels. 
The random flipping follows the pattern 
[7,9,0,4,2,1,3,5,6,8], which means digital 0 will be labelled 
by 7, 1 by 9, and so on. CAT achieved a classification 
accuracy of 99.77%. CIFAR-10 dataset trained on 10% 
randomly flipped labels, and CIFAR-100 with 50% flipped 
label noise. When comparing the CAT approach with an 
expectation-maximisation (EM), the results showed that the 
CAT approach needs less time to converge, increasing the 
CNN effectiveness and making it more robust. At the same 
time, EM requires too much time costs. 

On the other hand, Arazo et al. [23] suggested a training 
approach for CNNs which avoided fitting noisy labels. 
Their strategy relied on unsupervised learning to distinguish 
noisy and true labels. In other words, it cleaned the training 
data on the fly. They applied their approach on CIFAR-10 
and CIFAR-100 data sets to display their approach's 
strengths and weaknesses and prove its outstanding 
performance.  

Fewer studies were exploring the behaviour of deep 
models when they were trained using noisy labels. An 
example of such a study is the work of Rolnick et al. [24]. 
They used three data sets: MNIST, ImageNet and CIFAR-
10 with different ratios of noisy labels. These noises were 
added using three structures: confusing order, reverse 
confusing order, and random order. Then, they applied 
CNN with Conv4, Conv6 and ResNet. They claimed that 
the performance of the CNN model with noisy labels 
depends on the amount of noise in the set, batch size and 
learning rate. Overall, ResNet outperformed the other CNN 
models.  

In this study, the performance and behaviour of fine-
tuning CNN models will be investigated when using in-
domain data with noisy labels. Four pre-trained models will 
be understudied: InceptionV3, VGG19, MobileNetV2 and 
DenseNet121. Similar to the work of Rolnick et al. [24], the 
label noise will be added artificially to a clean data set with 
different ratios, as will be described in Section 3. 

3. Methodology 

Most models are trained on a clean data set; however, 
this might reduce generalisation and overfitting when the 
data set is small. One solution is to use a pre-trained model 
previously trained on an extensive data set for another task. 
Then, fine-tune this model using an in-domain data set. This 
work focuses on a multi-classification food detection task 
using pre-trained models fine-tuned by data set with noisy 
labels. First, the noise was added to the labels using the 
method described in Section 3.A. Next, the four pre-trained 
models, InceptionV3, MobileNetV2, VGG19 and 
DenseNet121, are described in the following section. 

3.1 Synthetic Label Noise 

Real-world data contains a lot of noise, whether in 
samples or their labels. As this work attempt to measure the 
impact of label noise in fine-tuning pre-trained models, 
synthetic noisy labels are added to the labels of a clean data 
set with controlling ratios. Generally, this can be done by 
randomly flipping the original labels. The flipped labels can 
be either: 
 Symmetric label noise is a class independent noise, 

where noise ratio is the probability of a label flip 
spread uniformly among all the other classes. 
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 Asymmetric label noise is a class dependent noise, 
where a noise ratio is a probability if a label flips to a 
specific class. 

 
In this study, only symmetric label noise was used. In 

this case, for a multi-classification problem with 𝐶 classes, 
assume that the 𝑘th sample in the data set has an actual label 
𝑦ො௞ ൌ 𝑖. When the noise ratio 𝜖 is applied to the data set, the 
new (noisy) label can be assigned randomly using the 
following probability: 

𝑝ሺ𝑦௞ ൌ 𝑗ሻ ൌ
𝜖

𝐶 െ 1
,∀𝑗 ് 𝑖; 

 
𝑝ሺ𝑦௞ ൌ 𝑖ሻ ൌ 𝑖 െ 𝜖; 

 
In other words, there is an equal chance to assign 

incorrect label between all non-true labels. 
 

3.2 CNN Pre-trained Model Architectures 

CNN is a method in deep learning to detect objects, 
shapes and edges by a sequence of filters, also known as 
kernels consisting of trainable parameters, which convolves 
the input images to extract the features. This research used 
four types of pre-trained models which are: InceptionV3 
[25], MobileNetV2 [26], VGG19 [27] and DenseNet121 
[28]. 

Inception [29] model has 22 layers, and the main 
property of this architecture is the optimised utilisation of 
the computing resources inside the net. Its design permits 
the depth and width increasing of the network while 
preserving the computational cost constant. InceptionV3, 
also known as GoogLeNet, is one of the Inceptions family 
with 48 layers deep and many improvements [25]. 
MobileNet [30] is based on depthwise separable 
convolutions and consists of 28 layers. Its architecture is 
small and less computationally expensive. This study uses 
MobileNetV2 [26], which still uses depthwise separable 
convolutions and has 53 layers. It permits a very memory-
efficient inference and relies on utilised standard operations 
present in all neural frameworks. VGG [27] network's 
architecture aims to evaluate the increasing depth of 
networks using an architecture with small (3 ൈ 3) 
convolution filters. There are multiple versions of the VGG 
that varies in depth and number of layer. VGG19 is the one 
used in this study with 19 layers. DenseNet [28] uses feed-
forward to introduce direct connections between any two 
layers while using the same feature-map size. It consists of 
5 layers, and it helps to decrease the vanishing-gradient 
problem and reduce the number of parameters. This study 
uses one version of DenseNet with 121 layers, also known 
as DenseNet121. Table 2 summarises the specifications of 
the used pre-trained models in this study. As shown, 
VGG19 has the most significant number of trainable 

parameters with the lowest number of layers. On the other 
hand, DenseNet121 is the deepest model but one with fewer 
trainable parameters. 

3.3 Fine-tuning Pre-trained Models 

Fine-tuning is the process of using a model which 
trained for a specific task to another task, also known as a 
pre-trained model. Several strategies are to be followed in 
the literature depending on the size of the in-domain data 
set. If the in-domain data set is small, the output layer of the 
pre-trained model is removed. Then, the model is used to 
extract feature maps from the in-domain data. These feature 
maps are then fed to either a classifier or one or more fully 
connected layer(s). If the in-domain data set is large enough, 
the output layer is replaced with a suitable SoftMax layer 
along with one or more fully connected layers if needed. 
Then, the whole model is trained with or without freezing 
some of the original layers during the training. If the layer 
is not frozen, its pre-trained weights will be used as initial 
values for the training process. The latter strategy was used 
in this study as there is enough data for each class in the data 
set. The output layer was replaced with a global average 
pooling layer to extract the most significant features, two 
fully connected layers with 20% of dropout and 320 nodes 
each and an output layer with some nodes equivalent to the 
number of classes to be detected. Rectified linear activation 
function (ReLU) was used as an activation function for the 
first two added fully connected layers, and SoftMax was 
used for the last one. Figure 1 illustrated the architecture of 
the entire fine-tuned CNN model when MobileNetV2 was 
used as the pre-trained model. 

4. Food-101 Data Set 

Food-101 data set [31] contains 101 food categories. 
Each category has 1000 images, split into 750 images for 
training and 250 images for testing. Labels for the testing 
set have been manually cleaned, unlike labels for the 
training set, which contain some noise. Each image is a 
square image with a height and width of 512. Figure 2 
shows a sample from the data set with their labels.  

The main challenge in this data set is that images from 
the same food category might look very different, that is, 

Table 2 
Specifications of the pretrained models used in this study. Params. indicates 

to the number of trainable parameters. Top-1 and Top-5 is the model 
performance on image classification task of ImageNet [9] Challenge. 

Model  Layers  Params. 
(M)  

 Size  
(MB) 

Top-1 
% 

Top-5 
% 

InceptionV3 [25] 48  24   92 79.0 94.5 
DesneNet121 [28] 121  8   33  75.0 92.3 
MobileNetV2 [26] 53  4   14  74.7 -- 
VGG19 [27]  19  144   549  74.5 92.0 
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high intra-class variance. In contrast, images from different 
food categories might look similar, i.e. low inter-class 
variance. Greek salad is an example of a category with low 
inter-class variance as it looks very different based on its 
origin and the used ingredients, as shown in Figure 3. On 
the other hand, steak and chocolate cake dishes look very 
similar, as shown in Figure 4. 

All images were resized to be 224×224 and normalised 
to have pixel value to within [0,1] range for this study. 

5. Experiments 

5.1 Experimental Design 

All experiments were implemented and evaluated in 
Python and leverage TensorFlow and Keras [32] using 
Google Colab's Jupyter Notebooks [33] environment. First, 
data were split after shuffling into three sets: training, 
validation and testing with ratios 75%, 12.5% and 12.5%, 
respectively. Next, symmetric label noise was applied with 
different ratios, 10-30\%, using Chen et al. [34]. 

Data augmentation have been applied during training to 
increase the diversity of the data and improve the model's 
generalisation and minimise overfitting. It introduces 
random transformations at every epoch, such as rotation, 
horizontal flip, zoom, width/height shift and filling 
boundaries with the nearest colour. Table 3 lists the detailed 
parameters for data augmentation. 

 
 

Figure 1: The architecture of the entire fine-tuned CNN model when 
MobileNetV2 was used as the pretrained model. 
 
 
 

 
Figure 2: Four samples from Food-101 data set with their labels. 

 
Figure 3: An example of high intra-class variance. Images of the same 
food category (greek salad) that look different. 
 
 
 

 
Figure 4: An example of low inter-class variance. Images of different 
food categories (left: steak, right: chocolate cake) that look similar. 

Table 3 
Details of data augmentation applied during training. 

Argument   Value  
Horizontal flip   Yes  
Rotation range  40 
Width shift rnage  20% 
Height shift range  20% 
Zoom range  20% 
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Each model was investigated in two scenarios: fine-
tuned using clean labels and fine-tuned using noisy labels. 
These two scenarios were used to monitor the model's 
performance and the impact of added noise on the labels. 
To fine-tune or train these models, first, a batch size of 32 
was used. Second, each experiment was performed using 
two learning rates, 0.001 and 0.0001, with two different 
optimisers, stochastic gradient descent (SGD) and adaptive 
moment estimation (Adam). Table 4 summarises the chosen 
values for all hyperparameters, which were chosen 
empirically. 

5.2 Evaluation Matrices 

The performance of a multi-class classifier can be 
measured using average accuracy per class. For a multi-
class classifier with 𝐶  classes, the average accuracy per 
class, 𝐴𝑐𝑐, can be computed as: 

𝐴𝑐𝑐 ൌ
∑ 𝐴௜
஼
௜ୀଵ

𝐶
; 

where 𝐴௜ is the accuracy for class 𝑖, and 1 ൏ 𝑖 ൏ 𝐶, can 
be computed as follows: 

𝐴௜ ൌ
𝑡𝑝௜ ൅ 𝑡𝑛௜

𝑡𝑝௜ ൅ 𝑓𝑝௜ ൅ 𝑡𝑛௜ ൅ 𝑓𝑛௜
 

Where 𝑡𝑝௜ and 𝑡𝑛௜ are the number of samples correctly 
detected to belong to class 𝑖  or not, also known as true 
positives and true negatives, respectively. 𝑓𝑝௜ and 𝑓𝑛௜  are 

the number of samples incorrectly identified to be in class 𝑖 
or not, also known as false positives and false negatives, 
respectively. 

In addition to accuracy, other metrics can be used to 
evaluate a classifier performance, such as precision and 
recall. Precision is measured from the model point of view, 
while recall is measured from the actual data point of view. 
Precision is defined as how much of the samples predicted 
to be in class 𝑖  are correctly classified as 𝑖 . Recall, also 
known as sensitivity, is how much of the actual class 𝑖 
samples were correctly classified. Average precision, 𝑃𝑟𝑒, 
and recall, 𝑅𝑒𝑐 , for a classifier with 𝐶  classes can be 
computed as: 

𝑃𝑟𝑒 ൌ
1
𝐶
෍ 𝑃௜

஼

௜ୀଵ
, 

𝑅𝑒𝑐 ൌ
1
𝐶
෍ 𝑅௜

஼

௜ୀଵ
, 

 
where 𝑃௜  and 𝑅௜ are per class precision and recall; 

respectively, which can be computed as follows: 

𝑃௜ ൌ
𝑡𝑝௜

𝑡𝑝௜ ൅ 𝑓𝑝௜
, 

𝑅௜ ൌ
𝑡𝑝௜

𝑡𝑝௜ ൅ 𝑓𝑛௜
, 

While precision and recall measure two different aspects 
of a classifier, the F1-score considers both aspects into a 
single metric. F1-score, 𝐹1, is computed as the harmonic 
mean of the precision and recall: 

𝐹1 ൌ
2 ൈ 𝑃𝑟𝑒 ൈ 𝑅𝑒𝑐
𝑃𝑟𝑒 ൅ 𝑅𝑒𝑐

 

6. Results and Discussion 

First, several experiments were performed using 
different combinations of hyperparameter, shown in Table 
4. The best performing experiments are shown in Table 5. 

Table 4 
Details of chosen training hyperparameters. 

Hyperparameter  Value  
Batch size  32 
Learning rate  0.001 and 0.0001  
Momentum  0.8 
Epochs  variable  
Early stopping  100 
Optimizer  SGD and Adam  
Momentum SGD  0.9 
Learning rate decay  epoch/iteration  

Table 5 
Details and performance of best models when fine-tuning using data with clean labels. 

Model epochs 
Learning 

rate Optimizer 
Accuracy 

% 
F1 
% 

Recall 
% 

Precision 
% 

Top-5 
% 

InceptionV3 10 0.001 SGD 74.1 75.8 69.3 83.9 93.5 
10 0.0001 Adam 73.4 74.9 68.7 82.7 -- 
26 0.001 SGD 79.2 80.5 76.4 85.3 -- 

VGG19 10 0.001 SGD 64.9 65.7 55.4 81.4 90.5 
20 0.001 SGD 74.8 76.1 69.8 83.9 -- 
26 0.001 SGD 76.3 77.8 72.7 83.9 -- 

MobileNetV2 10 0.001 SGD 71.5 73.0 66.3 81.5 -- 
26 0.001 SGD 78.3 79.7 75.1 85.0 93.5 
10 0.001 Adam 66.4 67.4 57.0 83.2 -- 

DenseNet121 22 0.0001 Adam 81.7 82.7 79.3 86.4 94.6 
30 0.0001 SGD 75.4 76.4 68.7 86.5 -- 
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Generally, results are getting better for all models with more 
extended training, more epochs, and SGD optimiser except 
for DenseNet121. Precision ranges, for all experiments, 
between 81-87%, even when the accuracy is as low as 
64.9%. Unlike precision, the recall has a broader range 
between 55-79%. These ranges might suggest that the 
models captured most of the classes, but they still confused 
them. The model based on DenseNet121 outperformed all 
other models with an accuracy of 81.7%. This performance 
could be due to its architecture which has a strong gradient 
flow for error signal between earlier layers and 
classification layer. Also, DenesNet121 received all 
previous layers as input, making the features more diverse 
and getting more rich patterns. In addition, it uses features 
of all levels of complexity, which leads to smoother 
decision boundaries that help to learn to discriminate 
between classes more effectively than the other models, as 
shown in Figure 5. 

The configurations of these best models were used for 
the second set of experiments with noisy labels. Table 6 
shows the evaluation of the models when fine-tuned with 
data, including different ratios of label noise. Consequently, 
there is a clear linear relationship with a negative correlation 
between all evaluation metrics and the amount of added 
symmetric label noise to the data, as depicted in Figure 6. 
In other words, the higher the noise ratio, the worse the 
model will perform. 

7. Conclusion and Future Work 

This paper aimed to explore the impact of label noise on 
fine-tuning pre-trained CCN models. The impact was 
measured in a food recognition task using Food-101 as a 
benchmark. Four pre-trained CNN models were included in 
this study: InceptionV3, VGG19, MobileNetV2 and 
DenseNet121. Symmetric label noise was added in three 
ratios: 10%, 20% and 30%. In clean data, the models based 
on DenseNet121 outperformed the other models. However, 

when noisy labels were introduced, the performance of all 
models degraded almost linearly with the amount of added 
noise. As a next step, methods for overcoming such noisy 
labels will be explored. 
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