
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

182

Manuscript received July 5, 2021
Manuscript revised July 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.7.22

Food Detection by Fine-Tuning Pre-trained
Convolutional Neural Network Using Noisy Labels

Shroog Alshomrani, Lina Aljoudi, Banan Aljabri, Sarah Al-Shareef,
{s44280319, s44280160, s44280163}@st.uqu.edu.sa, saashareef@uqu.edu.sa

Computer Science Department, Umm Al-Qura University, Makkah, Saudi Arabia

Summary
Deep learning is an advanced technology for large-scale data
analysis, with numerous promising cases like image processing,
object detection and significantly more. It becomes customarily to
use transfer learning and fine-tune a pre-trained CNN model for
most image recognition tasks. Having people taking photos and
tag themselves provides a valuable resource of in-data. However,
these tags and labels might be noisy as people who annotate these
images might not be experts. This paper aims to explore the impact
of noisy labels on fine-tuning pre-trained CNN models. Such
effect is measured on a food recognition task using Food101 as a
benchmark. Four pre-trained CNN models are included in this
study: InceptionV3, VGG19, MobileNetV2 and DenseNet121.
Symmetric label noise will be added with different ratios. In all
cases, models based on DenseNet121 outperformed the other
models. When noisy labels were introduced to the data, the
performance of all models degraded almost linearly with the
amount of added noise.
Keywords:
deep learning, food image detection, symmetric label noise,
convolutional neural networks, transfer learning.

1. Introduction

Healthy diets are essential for human health. In the
current time, people have increased awareness of the
importance of a healthy diet. As a result, automatic
recognition systems for drinks and foods have appeared.
These systems recognise the components of the drink or
food and estimate their nutritional value to help evaluate the
diet. The group benefiting from these systems is significant,
including patients with dietary restrictions and people who
follow a diet [1].

Several factors make detecting images of food and drink
difficult. Among them, foods are usually deformable
objects, and thus it is difficult to determine the type of food
in the image. Besides, some food items may have a high
intra-class variance but a low inter-class variance [2]. In
other words, objects of the same food category look very
different but resemble other items from different categories.
Consequently, detecting a food category for such items
become challenging.

Previously, machine learning was active in many areas
and worked effectively for data processing; however, it
cannot analyse raw data because it usually needs to be

supplemented with a manual feature extraction method.
Through advancements in hardware computing capacity
and storage space, machine learning capabilities can be
enhanced by adding more complex structures to represent
unstructured data with deep models. Due to the strong
learning ability of the deep learning method in regression
and classification, solving many complex problems become
quick and effective. However, it requires a sufficient
amount of data for the required problem. For example, due
to the powerful feature of automatic learning features, deep
learning is applied in the food domain to classify a food
category to discover its quality and estimate the number of
food calories. Convolutional Neural Networks (CNNs) are
currently considered one of the most common deep models
used in analysing big data in various fields of computer
vision research [3].

CNNs are the type of deep neural networks inspired by
the visual cortex of animals as these individual neurons
interact with the overlapping regions of the visual field.
Consequently, CNN becomes suitable for computer vision
because the goal of computer vision is similar to animal
vision: gaining an understanding of interfering images [4].
Furthermore, we implemented CNN in this paper because it
can ignore surrounding noise for label noise with enough
training data, because of its high classification accuracy and
learn optimal features from images adaptively; thus, this
suitable for our research type. Moreover, CNN can be
trained by the way that it can detect objects in the same
network [5, 6].

This research implemented four fine-tuned pre-trained
CNN models on the Food-101 data set with different ratios
of added label noise. Also, it experimented with different
architectures using two types of optimisers at different
learning rates.

The rest of this paper is ordered as follows. Section 2
reviews the related literature on the subject and similar
previous attempts. Then, the Food-101 data set is described
in Section 4. An overview of the pre-trained models used in
this study and how they were fine-tuned is presented in
Section 3. Section 5 describes this study's experimental
design and configurations with the results its discussion in
Section 6. Finally, this study is concluded in Section 7 with
a brief direction for future work.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

183

2. Related Work

The reviewed literature can be grouped into two collections:
food detection using deep models and training models using
noisy labels.

2.1 Food Detection using Deep Models

In 2019, Zhou et al. [7] reviewed most of the problems
addressed by machine learning researchers in the food
domain. Their survey found that deep learning models were
more effective than other methods like traditional machine
learning algorithms and manual feature extractors.

In 2014, Kagaya et al. [8] applied CNN model to
distinguish food images from non-food ones. They used two
data sets: ImageNet [9] and a collection of food images
collected from the food-logging app. They experimented
with different depth of CNN, between 2 to 4, and found that
a two-layer CNN architecture outperformed the rest with an
accuracy of 93.8%. They also found that food colours
dominate food recognition.

In 2018, Heravi et al. [10] proposed the ConvNet system
to reduce the number of parameters used in training while
maintaining high accuracy and was tested on two real-world
datasets UECFood-256 and Food-101. This system gave
high results compared to ConvNet, AlexNet, GoogLeNet,
VGGNet, but it is close to the efficiency of ResNet50.

In 2016, Wu et al. [11] proposed an error improvement
system to be closer to correct by adding hierarchical
semantic relationships to CNN. The proposed method has
been tested with GoogLeNet model on two datasets: Food-
101 and 5-Chain menu from popular restaurants. This
system improved the results and reduced loss function.

In 2017, Pandey et al.[12] proposed a system to identify
the meal's contents called Ensemble Net, which combines
the outputs of three Pre-trained models GoogLeNet and
AlexNet and ResNet. They applied this system to two sets
of data from the real world. They found that it outperforms
many other methodologies.

In 2016, Liu et al. [13] proposed a system to enhance the
accuracy of dietary assessment by analysing the food
images captured by mobile devices. They proposed CNN-
based algorithms with optimisations, and they applied them
to two real-world food image datasets. Their results proved
that the proposed approach is a promising solution for the
food image classification problem.

In 2017, Liu et al.[14] proposed a system for identifying
food and helping with dietary assessment by capture photos
by mobile, cleaning them, pre-processing them, and then
analysing them using CNN models-Inception. They applied
this system to two data sets, Food-101 and a UEC data set.
They found that this system gave high results compared to
their other proposed system in [13].

In 2020, Ramdani et al. [15] proposed a food detection
system by using CNN to help to automate the estimation of
food price. They used 480 for fine-tuning with 80% of the
data for fine-tuning and 20% for testing. Their system can
classify six types of food and achieve an accuracy of 100%
for the six types and with 10 seconds of detection time.

In 2018 Zheng et al.[16] proposed a new framework
depending on two approaches: the mid-level and deep CNN
approach for food image recognition using three datasets.
The researchers faced difficulty while training the model of
CNN with the unlabeled mid-level parts data. They solved
this problem by designing a clustering-based FP label
mining scheme that used unlabeled data to generate part-
level labels. The proposed approach achieved excellent
accuracy when comparing it with other methods.

Table 1
Performance of previous work using deep models on Food-101 data set. Top-1 and Top-5 are accuracy scores for the model when considering the first

predicted class or top five classes; respectively.

Reference #Class Additional data
Data

Augment. Pretrained models Top-1 Top-5
Heravi et al. [10]

101
UECFood-256 Yes ConvNet, AlexNet,

GoogLeNet, VGG, ResNet
65.40% 87.00%

Yanai and Kawano [19] 100 Twitter photo data Yes - 70.40% --

Wu et al. [11] 101 5-Chain No GoogLeNet 72.10% --

Pandey et al. [12] 101 IndianFood No GoogleNet, AlexNet, ResNet 72.10% 91.60%

Liu et al [13] 101 -- No GoogLeNet 77.40% 93.70%

Liu et al [14] 101 UEC dataset No Inception 77.00% 94.00%

Fu et al. [20] 100/256/101 UEC100, UEC256 Yes - 78.50% 94.10%

Ciocca et al. [21] 1200 UNICT-FD1200 No ResNet-50 82.50% 95.80%

Zheng et al. [16] 101 UECFood-256 No AlexNet, InceptionV3 88.00% --

Hassannejad et al. [17]
101

UECFOOD100,
UECFOOD256

No InceptionV3 88.30% 96.90%

Martinel et al. [18]
101

UECFOOD100,
UECFOOD256

Yes - 90.30% 98.70%

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

184

In 2016 Hassannejad et al. [17] introduced a pre-trained
model of deep CNN called Inception V3. They used three
kinds of dataset: ETH Food-101, UEC FOOD 100, and
UEC FOOD 256. They achieved 88.28%, 81.45%, and
76.17% respectively for top-1 accuracy and 96.88%,
97.27%, and 92.58% for the top-5 accuracy.

Another research for food recognition in 2018 was
proposed by Martinel et al. [18] depending on deep neural
network (DNN) with two primary branches: the residual
and slice networks. They used three datasets which were:
UECFood100, UECFood256 and Food-101. This wide slice
residual network (WISer) architecture achieved a good
performance compared to other existing architectures.

In 2015, Yanai and Y. Kawano.[19] studied the efficacy
of using the deep CNN to detect food images on two
datasets: UEC-FOOD100 and UEC-FOOD256. They use
different techniques like pre-training with ImageNet data,
fine-tuning and extract features from the pre-trained CNN.
The result has shown the effectiveness of DCNN for large-
scale image data by 78.77% and 67.57% accuracy for the
UEC-FOOD100/256 datasets.

In 2017, Z. Fu, D. Chen, and H. Li.[20] introduced the
baseline approach, it is a robust deep network for food
images. The method implemented on ChinFood1000 along
evaluated on three famous datasets: UEC100, UEC256,
Food-101. All results prove the effectiveness of their
approach.

As this work uses the Food-101 data set, Table 1
summarises all the previous studies that use this data set for
food detection and classification tasks.

2.2 Noisy Label

Several studies have been investigating overcoming the
noisy label issue when training deep models. These studies
have attempted to make the models robust to noise in labels
or de-noise the data set before the training. Of the former
set of studies, Li et al. [22] proposed an approach called
Cyclic Annealing Training (CAT) which can speed up the
CNN training in every M-step by utilising a fast annealing
training method. Thus, it reduces the training time and
improves the performance of the image classification. CAT
uses three kinds of datasets: MNIST, CIFAR-10 and
CIFAR-applies under different noisy labels pattern; 46% of
noisy labels on the MNIST dataset randomly flip the labels.
The random flipping follows the pattern
[7,9,0,4,2,1,3,5,6,8], which means digital 0 will be labelled
by 7, 1 by 9, and so on. CAT achieved a classification
accuracy of 99.77%. CIFAR-10 dataset trained on 10%
randomly flipped labels, and CIFAR-100 with 50% flipped
label noise. When comparing the CAT approach with an
expectation-maximisation (EM), the results showed that the
CAT approach needs less time to converge, increasing the
CNN effectiveness and making it more robust. At the same
time, EM requires too much time costs.

On the other hand, Arazo et al. [23] suggested a training
approach for CNNs which avoided fitting noisy labels.
Their strategy relied on unsupervised learning to distinguish
noisy and true labels. In other words, it cleaned the training
data on the fly. They applied their approach on CIFAR-10
and CIFAR-100 data sets to display their approach's
strengths and weaknesses and prove its outstanding
performance.

Fewer studies were exploring the behaviour of deep
models when they were trained using noisy labels. An
example of such a study is the work of Rolnick et al. [24].
They used three data sets: MNIST, ImageNet and CIFAR-
10 with different ratios of noisy labels. These noises were
added using three structures: confusing order, reverse
confusing order, and random order. Then, they applied
CNN with Conv4, Conv6 and ResNet. They claimed that
the performance of the CNN model with noisy labels
depends on the amount of noise in the set, batch size and
learning rate. Overall, ResNet outperformed the other CNN
models.

In this study, the performance and behaviour of fine-
tuning CNN models will be investigated when using in-
domain data with noisy labels. Four pre-trained models will
be understudied: InceptionV3, VGG19, MobileNetV2 and
DenseNet121. Similar to the work of Rolnick et al. [24], the
label noise will be added artificially to a clean data set with
different ratios, as will be described in Section 3.

3. Methodology

Most models are trained on a clean data set; however,
this might reduce generalisation and overfitting when the
data set is small. One solution is to use a pre-trained model
previously trained on an extensive data set for another task.
Then, fine-tune this model using an in-domain data set. This
work focuses on a multi-classification food detection task
using pre-trained models fine-tuned by data set with noisy
labels. First, the noise was added to the labels using the
method described in Section 3.A. Next, the four pre-trained
models, InceptionV3, MobileNetV2, VGG19 and
DenseNet121, are described in the following section.

3.1 Synthetic Label Noise

Real-world data contains a lot of noise, whether in
samples or their labels. As this work attempt to measure the
impact of label noise in fine-tuning pre-trained models,
synthetic noisy labels are added to the labels of a clean data
set with controlling ratios. Generally, this can be done by
randomly flipping the original labels. The flipped labels can
be either:
 Symmetric label noise is a class independent noise,

where noise ratio is the probability of a label flip
spread uniformly among all the other classes.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

185

 Asymmetric label noise is a class dependent noise,
where a noise ratio is a probability if a label flips to a
specific class.

In this study, only symmetric label noise was used. In

this case, for a multi-classification problem with 𝐶 classes,
assume that the 𝑘th sample in the data set has an actual label
𝑦ො௞ ൌ 𝑖. When the noise ratio 𝜖 is applied to the data set, the
new (noisy) label can be assigned randomly using the
following probability:

𝑝ሺ𝑦௞ ൌ 𝑗ሻ ൌ
𝜖

𝐶 െ 1
,∀𝑗 ് 𝑖;

𝑝ሺ𝑦௞ ൌ 𝑖ሻ ൌ 𝑖 െ 𝜖;

In other words, there is an equal chance to assign

incorrect label between all non-true labels.

3.2 CNN Pre-trained Model Architectures

CNN is a method in deep learning to detect objects,
shapes and edges by a sequence of filters, also known as
kernels consisting of trainable parameters, which convolves
the input images to extract the features. This research used
four types of pre-trained models which are: InceptionV3
[25], MobileNetV2 [26], VGG19 [27] and DenseNet121
[28].

Inception [29] model has 22 layers, and the main
property of this architecture is the optimised utilisation of
the computing resources inside the net. Its design permits
the depth and width increasing of the network while
preserving the computational cost constant. InceptionV3,
also known as GoogLeNet, is one of the Inceptions family
with 48 layers deep and many improvements [25].
MobileNet [30] is based on depthwise separable
convolutions and consists of 28 layers. Its architecture is
small and less computationally expensive. This study uses
MobileNetV2 [26], which still uses depthwise separable
convolutions and has 53 layers. It permits a very memory-
efficient inference and relies on utilised standard operations
present in all neural frameworks. VGG [27] network's
architecture aims to evaluate the increasing depth of
networks using an architecture with small (3 ൈ 3)
convolution filters. There are multiple versions of the VGG
that varies in depth and number of layer. VGG19 is the one
used in this study with 19 layers. DenseNet [28] uses feed-
forward to introduce direct connections between any two
layers while using the same feature-map size. It consists of
5 layers, and it helps to decrease the vanishing-gradient
problem and reduce the number of parameters. This study
uses one version of DenseNet with 121 layers, also known
as DenseNet121. Table 2 summarises the specifications of
the used pre-trained models in this study. As shown,
VGG19 has the most significant number of trainable

parameters with the lowest number of layers. On the other
hand, DenseNet121 is the deepest model but one with fewer
trainable parameters.

3.3 Fine-tuning Pre-trained Models

Fine-tuning is the process of using a model which
trained for a specific task to another task, also known as a
pre-trained model. Several strategies are to be followed in
the literature depending on the size of the in-domain data
set. If the in-domain data set is small, the output layer of the
pre-trained model is removed. Then, the model is used to
extract feature maps from the in-domain data. These feature
maps are then fed to either a classifier or one or more fully
connected layer(s). If the in-domain data set is large enough,
the output layer is replaced with a suitable SoftMax layer
along with one or more fully connected layers if needed.
Then, the whole model is trained with or without freezing
some of the original layers during the training. If the layer
is not frozen, its pre-trained weights will be used as initial
values for the training process. The latter strategy was used
in this study as there is enough data for each class in the data
set. The output layer was replaced with a global average
pooling layer to extract the most significant features, two
fully connected layers with 20% of dropout and 320 nodes
each and an output layer with some nodes equivalent to the
number of classes to be detected. Rectified linear activation
function (ReLU) was used as an activation function for the
first two added fully connected layers, and SoftMax was
used for the last one. Figure 1 illustrated the architecture of
the entire fine-tuned CNN model when MobileNetV2 was
used as the pre-trained model.

4. Food-101 Data Set

Food-101 data set [31] contains 101 food categories.
Each category has 1000 images, split into 750 images for
training and 250 images for testing. Labels for the testing
set have been manually cleaned, unlike labels for the
training set, which contain some noise. Each image is a
square image with a height and width of 512. Figure 2
shows a sample from the data set with their labels.

The main challenge in this data set is that images from
the same food category might look very different, that is,

Table 2
Specifications of the pretrained models used in this study. Params. indicates

to the number of trainable parameters. Top-1 and Top-5 is the model
performance on image classification task of ImageNet [9] Challenge.

Model Layers Params.
(M)

 Size
(MB)

Top-1
%

Top-5
%

InceptionV3 [25] 48 24 92 79.0 94.5
DesneNet121 [28] 121 8 33 75.0 92.3
MobileNetV2 [26] 53 4 14 74.7 --
VGG19 [27] 19 144 549 74.5 92.0

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

186

high intra-class variance. In contrast, images from different
food categories might look similar, i.e. low inter-class
variance. Greek salad is an example of a category with low
inter-class variance as it looks very different based on its
origin and the used ingredients, as shown in Figure 3. On
the other hand, steak and chocolate cake dishes look very
similar, as shown in Figure 4.

All images were resized to be 224×224 and normalised
to have pixel value to within [0,1] range for this study.

5. Experiments

5.1 Experimental Design

All experiments were implemented and evaluated in
Python and leverage TensorFlow and Keras [32] using
Google Colab's Jupyter Notebooks [33] environment. First,
data were split after shuffling into three sets: training,
validation and testing with ratios 75%, 12.5% and 12.5%,
respectively. Next, symmetric label noise was applied with
different ratios, 10-30\%, using Chen et al. [34].

Data augmentation have been applied during training to
increase the diversity of the data and improve the model's
generalisation and minimise overfitting. It introduces
random transformations at every epoch, such as rotation,
horizontal flip, zoom, width/height shift and filling
boundaries with the nearest colour. Table 3 lists the detailed
parameters for data augmentation.

Figure 1: The architecture of the entire fine-tuned CNN model when
MobileNetV2 was used as the pretrained model.

Figure 2: Four samples from Food-101 data set with their labels.

Figure 3: An example of high intra-class variance. Images of the same
food category (greek salad) that look different.

Figure 4: An example of low inter-class variance. Images of different
food categories (left: steak, right: chocolate cake) that look similar.

Table 3
Details of data augmentation applied during training.

Argument Value
Horizontal flip Yes
Rotation range 40
Width shift rnage 20%
Height shift range 20%
Zoom range 20%

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

187

Each model was investigated in two scenarios: fine-
tuned using clean labels and fine-tuned using noisy labels.
These two scenarios were used to monitor the model's
performance and the impact of added noise on the labels.
To fine-tune or train these models, first, a batch size of 32
was used. Second, each experiment was performed using
two learning rates, 0.001 and 0.0001, with two different
optimisers, stochastic gradient descent (SGD) and adaptive
moment estimation (Adam). Table 4 summarises the chosen
values for all hyperparameters, which were chosen
empirically.

5.2 Evaluation Matrices

The performance of a multi-class classifier can be
measured using average accuracy per class. For a multi-
class classifier with 𝐶 classes, the average accuracy per
class, 𝐴𝑐𝑐, can be computed as:

𝐴𝑐𝑐 ൌ
∑ 𝐴௜
஼
௜ୀଵ

𝐶
;

where 𝐴௜ is the accuracy for class 𝑖, and 1 ൏ 𝑖 ൏ 𝐶, can
be computed as follows:

𝐴௜ ൌ
𝑡𝑝௜ ൅ 𝑡𝑛௜

𝑡𝑝௜ ൅ 𝑓𝑝௜ ൅ 𝑡𝑛௜ ൅ 𝑓𝑛௜

Where 𝑡𝑝௜ and 𝑡𝑛௜ are the number of samples correctly
detected to belong to class 𝑖 or not, also known as true
positives and true negatives, respectively. 𝑓𝑝௜ and 𝑓𝑛௜ are

the number of samples incorrectly identified to be in class 𝑖
or not, also known as false positives and false negatives,
respectively.

In addition to accuracy, other metrics can be used to
evaluate a classifier performance, such as precision and
recall. Precision is measured from the model point of view,
while recall is measured from the actual data point of view.
Precision is defined as how much of the samples predicted
to be in class 𝑖 are correctly classified as 𝑖 . Recall, also
known as sensitivity, is how much of the actual class 𝑖
samples were correctly classified. Average precision, 𝑃𝑟𝑒,
and recall, 𝑅𝑒𝑐 , for a classifier with 𝐶 classes can be
computed as:

𝑃𝑟𝑒 ൌ
1
𝐶
෍ 𝑃௜

஼

௜ୀଵ
,

𝑅𝑒𝑐 ൌ
1
𝐶
෍ 𝑅௜

஼

௜ୀଵ
,

where 𝑃௜ and 𝑅௜ are per class precision and recall;

respectively, which can be computed as follows:

𝑃௜ ൌ
𝑡𝑝௜

𝑡𝑝௜ ൅ 𝑓𝑝௜
,

𝑅௜ ൌ
𝑡𝑝௜

𝑡𝑝௜ ൅ 𝑓𝑛௜
,

While precision and recall measure two different aspects
of a classifier, the F1-score considers both aspects into a
single metric. F1-score, 𝐹1, is computed as the harmonic
mean of the precision and recall:

𝐹1 ൌ
2 ൈ 𝑃𝑟𝑒 ൈ 𝑅𝑒𝑐
𝑃𝑟𝑒 ൅ 𝑅𝑒𝑐

6. Results and Discussion

First, several experiments were performed using
different combinations of hyperparameter, shown in Table
4. The best performing experiments are shown in Table 5.

Table 4
Details of chosen training hyperparameters.

Hyperparameter Value
Batch size 32
Learning rate 0.001 and 0.0001
Momentum 0.8
Epochs variable
Early stopping 100
Optimizer SGD and Adam
Momentum SGD 0.9
Learning rate decay epoch/iteration

Table 5
Details and performance of best models when fine-tuning using data with clean labels.

Model epochs
Learning

rate Optimizer
Accuracy

%
F1
%

Recall
%

Precision
%

Top-5
%

InceptionV3 10 0.001 SGD 74.1 75.8 69.3 83.9 93.5
10 0.0001 Adam 73.4 74.9 68.7 82.7 --
26 0.001 SGD 79.2 80.5 76.4 85.3 --

VGG19 10 0.001 SGD 64.9 65.7 55.4 81.4 90.5
20 0.001 SGD 74.8 76.1 69.8 83.9 --
26 0.001 SGD 76.3 77.8 72.7 83.9 --

MobileNetV2 10 0.001 SGD 71.5 73.0 66.3 81.5 --
26 0.001 SGD 78.3 79.7 75.1 85.0 93.5
10 0.001 Adam 66.4 67.4 57.0 83.2 --

DenseNet121 22 0.0001 Adam 81.7 82.7 79.3 86.4 94.6
30 0.0001 SGD 75.4 76.4 68.7 86.5 --

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

188

Generally, results are getting better for all models with more
extended training, more epochs, and SGD optimiser except
for DenseNet121. Precision ranges, for all experiments,
between 81-87%, even when the accuracy is as low as
64.9%. Unlike precision, the recall has a broader range
between 55-79%. These ranges might suggest that the
models captured most of the classes, but they still confused
them. The model based on DenseNet121 outperformed all
other models with an accuracy of 81.7%. This performance
could be due to its architecture which has a strong gradient
flow for error signal between earlier layers and
classification layer. Also, DenesNet121 received all
previous layers as input, making the features more diverse
and getting more rich patterns. In addition, it uses features
of all levels of complexity, which leads to smoother
decision boundaries that help to learn to discriminate
between classes more effectively than the other models, as
shown in Figure 5.

The configurations of these best models were used for
the second set of experiments with noisy labels. Table 6
shows the evaluation of the models when fine-tuned with
data, including different ratios of label noise. Consequently,
there is a clear linear relationship with a negative correlation
between all evaluation metrics and the amount of added
symmetric label noise to the data, as depicted in Figure 6.
In other words, the higher the noise ratio, the worse the
model will perform.

7. Conclusion and Future Work

This paper aimed to explore the impact of label noise on
fine-tuning pre-trained CCN models. The impact was
measured in a food recognition task using Food-101 as a
benchmark. Four pre-trained CNN models were included in
this study: InceptionV3, VGG19, MobileNetV2 and
DenseNet121. Symmetric label noise was added in three
ratios: 10%, 20% and 30%. In clean data, the models based
on DenseNet121 outperformed the other models. However,

when noisy labels were introduced, the performance of all
models degraded almost linearly with the amount of added
noise. As a next step, methods for overcoming such noisy
labels will be explored.

References
[1] D. de Ridder, F. Kroese, C. Evers, M. Adriaanse, and M.

Gillebaart, “Healthy diet: Health impact, prevalence,
correlates, and interventions,” Psychology & health,vol. 32,
no. 8, pp. 907–941, 2017.

[2] S. Mezgec and B. Korouˇsi ́c Seljak, "Nutrinet: a deep
learning food and drink image recognition system for dietary
assessment," Nutrients, vol. 9, no. 7, p. 657, 201

[3] J. Schmidhuber, "Deep learning in neural networks: An
overview," Neural networks, vol. 61, pp. 85–117, 2015.

[4] D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular
interaction and functional architecture in the cat's visual
cortex," The Journal of physiology, vol. 160, no. 1, pp. 106–
154, 1962.

[5] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, "Overfeat: Integrated recognition, localisation and

Table 6
Performance of best models when fine-tuning using data with different

ratios of label noise.
Model Noise

%
Accuracy

%
F1
%

Recall
%

Precision
%

InceptionV3 0 79.2 80.5 76.4 85.3
10 70.1 70.6 63.2 80.2
20 62.6 61.6 53.1 73.9
30 54.2 51.2 42.2 65.7

VGG19 0 76.3 77.8 72.7 83.9
10 67.9 66.6 56.7 81.2
20 58.8 53.1 41.6 74.6
30 51.2 41.1 29.9 67.2

MobileNetV2 0 78.3 79.7 75.1 85.0
10 70.1 69.6 61.6 80.6
20 59.9 57.5 47.3 74.1
30 51.4 45.7 35.3 65.9

DenseNet121 0 81.7 82.7 79.3 86.4
10 73.3 73.6 67.3 81.5
20 64.5 63.8 56.7 73.2
30 56.5 53.5 44.8 67.0

Figure 6: Accuracy of fine-tuned models in relation to the amount of
added label symmetric noise.

Figure 5: Learning curves for the accuracy of best performing fine-
tuned models during training.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

189

detection using convolutional networks," arXiv preprint
arXiv:1312.6229, 2013.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,C.-Y.
Fu, and A. C. Berg, "Ssd: Single shot multibox detector," in
European conference on computer vision.Springer, 2016, pp.
21–37.

[7] L. Zhou, C. Zhang, F. Liu, Z. Qiu, and Y. He, "Application
of deep learning in food: a review," Comprehensive reviews
in food science and food safety, vol. 18, no. 6, pp. 1793–1811,
2019.

[8] H. Kagaya, K. Aizawa, and M. Ogawa, "Food detection and
recognition using convolutional neural network," in
Proceedings of the 22nd ACM international conference on
Multimedia, 2014, pp. 1085–1088.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
"Imagenet: A large-scale hierarchical image database,"
in2009 IEEE conference on computer vision and pattern
recognition. Ieee, 2009, pp. 248–255.

[10] E. J. Heravi, H. H. Aghdam, and D. Puig, "An optimised
convolutional neural network with bottleneck and spatial
pyramid pooling layers for classification of foods," Pattern
Recognition Letters, vol. 105, pp. 50–58, 2018.

[11] H. Wu, M. Merler, R. Uceda-Sosa, and J. R. Smith, "Learning
to make better mistakes: Semantics-aware visual food
recognition," in Proceedings of the 24th ACM international
conference on Multimedia, 2016, pp. 172–176.

[12] P. Pandey, A. Deepthi, B. Mandal, and N. B. Puhan, "Foodnet:
Recognising foods using an ensemble of deep networks,"
IEEE Signal Processing Letters, vol. 24, no. 12, pp. 1758–
1762, 2017.

[13] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, andY. Ma,
"Deepfood: Deep learning-based food image recognition for
computer-aided dietary assessment," in International
Conference on Smart Homes and HealthTelematics. Springer,
2016, pp. 37–48.

[14] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, M. Yun-
sheng, S. Chen, and P. Hou, "A new deep learning-based food
recognition system for dietary assessment on an edge
computing service infrastructure," IEEE Transactions on
Services Computing, vol. 11, no. 2, pp. 249–261,2017.

[15] A. Ramdani, A. Virgono, and C. Setianingsih,
"Fooddetection with image processing using convolutional
neural network (CNN) method," in 2020 IEEE International
Conference on Industry 4.0, Artificial Intelligence, and
Communications Technology (IAICT). IEEE, 2020, pp.91–
96.

[16] J. Zheng, L. Zou, and Z. J. Wang, "Mid-level deep food part
mining for food image recognition," IET ComputerVision,
vol. 12, no. 3, pp. 298–304, 2018.

[17] H. Hassannejad, G. Matrella, P. Ciampolini, I. De Mu-nari,
M. Mordonini, and S. Cagnoni, "Food image recognition
using very deep convolutional networks," in Proceedings of
the 2nd International Workshop on Multimedia Assisted
Dietary Management, 2016, pp. 41–49.

[18] N. Martinel, G. L. Foresti, and C. Micheloni, "Wide-slice
residual networks for food recognition," in 2018 IEEEWinter
Conference on applications of computer vision (WACV).
IEEE, 2018, pp. 567–576.

[19] K. Yanai and Y. Kawano, "Food image recognition using
deep convolutional network with pre-training and fine-
tuning," in2015 IEEE International Conference on

Multimedia & Expo Workshops (ICMEW). IEEE, 2015, pp.
1–6.

[20] Z. Fu, D. Chen, and H. Li, "Chinfood1000: A large
benchmark dataset for Chinese food recognition,"
International Conference on Intelligent Computing. Springer,
2017, pp. 273–281.

[21] G. Ciocca, P. Napoletano, and R. Schettini, "Cnn-based
features for retrieval and classification of food images,"
Computer Vision and Image Understanding, vol. 176, pp.70–
77, 2018.

[22] J. Li, T. Dai, Q. Tang, Y. Xing, and S.-T. Xia, "Cyclic
annealing training convolutional neural networks for image
classification with noisy labels," in2018 25th IEEE
International Conference on Image Processing (ICIP).IEEE,
2018, pp. 21–25.

[23] E. Arazo, D. Ortego, P. Albert, N. O'Connor, and K.
McGuinness, "Unsupervised label noise modelling and loss
correction," international Conference on MachineLearning.
PMLR, 2019, pp. 312–321.

[24] D. Rolnick, A. Veit, S. Belongie, and N. Shavit, "Deep
learning is robust to massive label noise," arXiv
preprintarXiv:1705.10694, 2017.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,D.
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
"Going deeper with convolutions," in Proceedings of the
IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[26] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.
Chen, "Inverted residuals and linear bottlenecks: Mobile
networks for classification, detection and segmentation,"
CoRR, vol. abs/1801.04381,2018.[Online]. Available:
http://arxiv.org/abs/1801.04381

[27] K. Simonyan and A. Zisserman, "Very deep convolutional
networks for large-scale image recognition," arXivpreprint
arXiv:1409.1556, 2014.

[28] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
"Densely connected convolutional networks," in Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 4700–4708.

[29] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, andZ. Wojna,
"Rethinking the inception architecture for computer vision,"
in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp.2818–2826.

[30] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,W. Wang,
T. Wey and, M. Andreetto, and H. Adam, "Mobilenets:
Efficient convolutional neural networks for mobile vision
applications," arXivpreprintarXiv:1704.04861, 2017.

[31] L. Bossard, M. Guillaumin, and L. Van Gool, "Food-101 –
mining discriminative components with random forests," in
European Conference on Computer Vision,2014.

[32] F. Cholletet al., "Keras," https://keras.io, 2015.
[33] T. Kluyver, B. Ragan-Kelley, F. P érez, B. E. Granger,M.

Bussonnier, J. Frederic, K. Kelley, J. B. Hamrick,J. Grout, S.
Corlayet al., Jupyter Notebooks-a publishing format for
reproducible computational workflows., 2016, vol. 2016.

[34] P. Chen, B. B. Liao, G. Chen, and S. Zhang, "Under-standing
and utilising deep neural networks trained with noisy labels,"
in International Conference on MachineLearning. PMLR,
2019, pp. 1062–107

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

190

Shroog Alshomrani received her B.S degree from Prince
Sattam Bin Abdulaziz University, Riyadh, Saudi Arabia, in 2017.
She is currently a student in the M.S artificial intelligence at
Computer Science Department at Umm Al-Qura Uniersity,
Makkah, Saudi Arabia, and expected to receive her degree in 2022.

Lina Aljoudi received her B.S degree from Umm Al-Qura
University, Makkah, Saudi Arabia, in 2018. She is currently a
student in the M.S artificial intelligence at Computer Science
Department at Umm Al-Qura University, Makkah, Saudi Arabia,
and expected to receive her degree in 2022.

Banan Aljabri received her B.S degree from Umm Al-Qura
University, Makkah, Saudi Arabia, in 2019. She is currently a
student in the M.S artificial intelligence at Computer Science
Department at Umm Al-Qura University, Makkah, Saudi Arabia,
and expected to receive her degree in 2022.

Sarah Al-Shareef received the B.S. degree in computer science
from King Abdulaziz University, Jeddah, Saudi Arabia, in 2005
and the M.S. degree in advanced computer science from Sheffield
University, Sheffield, United Kingdom, in 2009 and a PhD degree
in computer science from Sheffield University, Sheffield, United
Kingdom, in 2015. Currently, she works as Assistant Professor in
Computer Science Department at Umm Al-Qura University,
Makkah, Saudi Arabia. Also, she is a member of IEEE Computer
Society, IEEE Young Professional, IEEE Signal Processing
Society. Her research interests include speech and Arabic
technologies and especially automatic speech recognition ad
acoustic modelling.

