DOI QR코드

DOI QR Code

A Study on Physical Properties of EPDM/Polyhedral Oligomeric Silsesquioxane (POSS) Composites

EPDM/POSS(Polyhedral oligomeric silsesquioxane) 복합재료의 물성 연구

  • 박현호 (계명대학교 자연과학대학 화학전공)
  • Received : 2021.06.11
  • Accepted : 2021.07.19
  • Published : 2021.08.10

Abstract

The crosslinking behavior of polyhedral oligomeric silsesquioxane (POSS) containing eight acrylate groups in a cage form in ethylene-propylene-diene rubber (EPDM) peroxide crosslinking, the effect on mechanical properties, and the thermal stability were investigated. An EPDM/POSS composite material was prepared by mixing 0 to 12 parts per hundreds of rubber (phr) of POSS per 100 phr of rubber by content and adding a peroxide crosslinking agent. As a result of crosslinking properties, it was found that the acrylate group of POSS was activated by peroxide and improved the peroxide crosslinking efficiency. Although the dispersion stability of POSS in EPDM/POSS composites was poor, the fracture strength, elongation and thermal stability were improved.

다면체 올리고머 실세스퀴옥산 (POSS) 중 케이지 형태 8개의 아크릴레이트 그룹을 포함하는 POSS가 에틸렌-프로필렌-디엔고무 (EPDM) 과산화물 가교에서의 가교 거동, 기계적 특성에 미치는 영향 및 열 안정성 등을 조사하였다. 고무 100 phr당 0~12 phr의 POSS를 함량 별로 혼합하고 과산화물 가교제를 첨가하여 EPDM/POSS 복합재료를 만들었다. 가교 특성 결과 POSS의 아크릴레이트 그룹이 과산화물에 의해 활성화 되었고, 과산화물 가교 효율을 향상시키는 것으로 나타났다. EPDM/POSS 복합재료에서 POSS의 분산안정성은 떨어졌지만, 복합재료의 파단 강도, 신장률 및 열 안정성은 향상되었다.

Keywords

Acknowledgement

본 연구는 계명대학교 신임교원 정착연구비에 의하여 연구된 논문이므로 이에 감사드립니다.

References

  1. A. Das, D. Y. Wang, K. W. Stockelhuber, R. Jurk, J. Fritzsche, M. Kluppel, and G. Heinrich, Rubber-Clay Nanocomposites: Some Recent Results, Adv. Polym. Sci., 239, 85-166 (2011).
  2. A. Usuki, A. Tukigase, and M. Kato, Preparation and properties of EPDM-clay hybrids, Polymer, 43, 2185-2189 (2002). https://doi.org/10.1016/S0032-3861(02)00013-7
  3. H. Acharya, M. Pramanik, S. K. Srivastava, and A. K. Bhowmick, Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution interalation: Structural characterization and properties, J. Appl. Polym. Sci., 93, 2429-2436 (2004). https://doi.org/10.1002/app.20774
  4. K. G. Gatos, R. Thomann, and J. Karger-Kocsis, Characteristics of ethylene propylene diene monomer rubber/organoclay nanocomposities resulting from different processing conditions and formulations, Polym. Int., 53, 1191-1197 (2004). https://doi.org/10.1002/pi.1556
  5. P. Pasbakhsh, H. Ismail, M. N. A. Fauzi, and A. A. Bakar. EPDM/modified halloysite nanocomposites, Appl. Clay Sci., 48, 405-413 (2010). https://doi.org/10.1016/j.clay.2010.01.015
  6. H. Ismail, P. Pasbakhsh, M. N. A. Fauzi, and A. A. Bakar, Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer(EPDM) nanocomposites, Polym. Test., 27, 841-850 (2008). https://doi.org/10.1016/j.polymertesting.2008.06.007
  7. F. B. Bujans, R. Verdejo, M. P. Cabero, S. Agouram, I. R. Ramos, A. G. Ruiz, and M. A. L. Manchado, Effects of functionalized carbon nanotubes in peroxide crosslinking of diene elastomers, Eur. Polym. J., 45, 1017-1023 (2009). https://doi.org/10.1016/j.eurpolymj.2008.12.029
  8. A. D. Falco, S. Goyanes, G. H. Rubiolo, I. Mondragon, and A. Marzocca., Carbon nanotubes as reinforcement of styrene-butadiene rubber, Appl. Surf. Sci., 254, 262-265 (2007). https://doi.org/10.1016/j.apsusc.2007.07.049
  9. J. Zhao, Y. Fu and S. Liu, Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Thermoplastic and Thermosetting Nanocomposites: A Review, Polym. Polym. Compos., 16, 483-500 (2008). https://doi.org/10.1177/096739110801600802
  10. G. Pan, J. E. Mark and D. W. Schaefer, Synthesis and characterization of fillers of controlled structure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcing siloxane elastomers, J. Polym. Sci. B Polym. Phys., 41, 3314-3323 (2003). https://doi.org/10.1002/polb.10695
  11. D. Chen, S. Yi, W. Wu, Y. Zhong, J. Liao, C. Huang and W. Shi, Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using Vinyl-POSS derivatives as cross linking agents, Polymer, 51, 3867-3878 (2010). https://doi.org/10.1016/j.polymer.2010.06.028
  12. T. F. Baumann, T. V. Jones, T. Wilson, A. P. Saab and R.S. Maxwell, Synthesis and characterization of novel PDMS nanocomposites using POSS derivatives as cross-linking filler, J. Polym. Sci. A Polym. Chem., 47, 2589-2596 (2009). https://doi.org/10.1002/pola.23344
  13. Y. R. Liu, Y. D. Huang and L. Liu, Influeneces of Mono-Silanolisobutyl-POSS in thermal stability of polymethylsiloxane, J. Mater. Sci., 42, 5544-5550 (2007). https://doi.org/10.1007/s10853-006-0972-0
  14. R. Y. Kannana, H. J. Salacinski, M. Odlyha, P. E. Butler and A. M. Seifalian, The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: An in vitro study, Biomaterials, 27, 1971-1979 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.006
  15. P. J. Flory and W. R. Krigbaum, Statistical Mechanics of Dilute Polymer Solutions.II, J. Chem. Phys., 18, 1086-1094 (1950). https://doi.org/10.1063/1.1747866
  16. J. A. Cornell, A. J. Winters, and L. Halterman, Mechanism of Rubber Coagent Peroxide Cure System, Rubber Chem. Technol., 43, 613-623 (1970). https://doi.org/10.5254/1.3547277
  17. Y. Lu, L. Liu, M. Tian, H. Geng, and L. Zang, Study on mechanical properties of elastomers reinforced by zinc dimethacrylate, Eur. Polym. J., 41, 589-598 (2005). https://doi.org/10.1016/j.eurpolymj.2004.10.012