DOI QR코드

DOI QR Code

Gas Permeation Characteristics of PEBAX-PEI Composite Membranes Containing ZIF-8@GO

ZIF-8@GO를 함유한 PEBAX-PEI 복합막의 기체투과 특성

  • Yi, Eun Sun (Department of Chemical Engineering and Materials Science, Sangmyung University) ;
  • Hong, Se Ryeong (Kyedang College of General Educations, Sangmyung University)
  • 이은선 (상명대학교 화공신소재학과) ;
  • 홍세령 (상명대학교 계당교양교육원)
  • Received : 2021.05.24
  • Accepted : 2021.06.21
  • Published : 2021.08.10

Abstract

In this study, PEBAX/GO-PEI and PEBAX/ZIF-8@GO-PEI composite membranes were prepared by varying the contents of GO and ZIF-8@GO in PEBAX, and also the gas permeation characteristics of N2 and CO2 was studied. Overall, the N2 and CO2 permeability of the PEBAX/GO-PEI composite membrane decreased as the GO content increased, and the CO2/N2 selectivity slightly increased. In the case of PEBAX/ZIF-8@GO-PEI composite membrane, the permeability of N2 decreased, but CO2 increased to 1 wt% of ZIF-8@GO and then decreased in the content thereafter. The CO2/N2 selectivity at 1 wt% of ZIF-8@GO was 92.3, showing the highest selectivity. This is thought to be due to the greatest effect of GO and ZIF-8 with good affinity for CO2 alongside the effect of porosity ZIF-8 while improving compatibility with PEBAX and dispersing evenly. In addition, PEBAX/ZIF-8@GO-PEI composite membrane improved both CO2 permeability and CO2/N2 selectivity than those of the PEBAX-PEI and PEBAX/GO-PEI membranes, except for ZIF-8@GO 5 wt%. The result was close to the Robeson upper bound.

본 연구에서는 PEBAX에 GO과 ZIF-8@GO의 함량을 달리하여 PEBAX/GO-PEI 복합막과 PEBAX/ZIF-8@GO-PEI 복합막을 제조하고, N2와 CO2의 투과 특성을 연구하였다. 전체적으로 PEBAX/GO-PEI 복합막의 N2와 CO2 투과도는 GO 함량이 증가할수록 감소하였고, CO2/N2 선택도는 약간 증가하였다. PEBAX/ZIF-8@GO-PEI 복합막에서도 N2의 투과도는 감소하였으나 CO2는 ZIF-8@GO 1 wt%까지 증가하였고, 그 이후의 함량에서는 감소하였다. CO2/N2 선택도는 ZIF-8@GO 1 wt%에서 92.3으로 가장 높은 선택도를 보였는데 이는 PEBAX와의 호환성을 향상시켜 고르게 분산되면서 다공성의 ZIF-8의 효과와 함께 CO2에 친화성이 좋은 GO, ZIF-8의 효과를 가장 크게 받았기 때문으로 생각된다. 또한 PEBAX/ZIF-8@GO-PEI 복합막은 ZIF-8@GO 5 wt%를 제외하고 PEBAX-PEI와 PEBAX/GO-PEI 복합막보다 CO2 투과도와 CO2/N2 선택도가 모두 향상되면서 Robeson upper bound에 근접하는 결과를 얻었다.

Keywords

Acknowledgement

이 논문은 상명대학교 2021년도 교내연구비 지원에 의해 수행되었으며 이에 감사드립니다.

References

  1. T. Li, Y. Pan, K. V. Peinemann, and Z. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425-426, 235-242 (2013). https://doi.org/10.1016/j.memsci.2012.09.006
  2. R. D. Noble, Perspectives on mixed matrix membranes, J. Membr. Sci., 378, 393-397 (2011). https://doi.org/10.1016/j.memsci.2011.05.031
  3. Y. Shen and A. C. Lua, Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic filler(fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation, Chem. Eng. J., 192, 201-210 (2012). https://doi.org/10.1016/j.cej.2012.03.066
  4. R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar, Mixed matrix membranes of pebax-1657 loaded with 4A zeolite for gaseous separations, Sep. Purif. Technol., 129, 1-8 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  5. J. S. Park, J. W. Rhim, B. G. Park, S. H. Kong, and S. Y. Nam, Preparation and gas barrier properties of chitosan/clay nanocomposite film, Membr. J., 15(3), 247 (2005).
  6. L. Ge, Z. Zhu, and V. Rudolph, Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane, Sep. Purif. Technol., 78, 76-82 (2011). https://doi.org/10.1016/j.seppur.2011.01.024
  7. F. H. Akhtar, M. Kumar, and K. V. Peinemann, Pebax 1657/graphene oxide composite membranes for improved water vapor separation, J. Membr. Sci., 525, 187-194 (2017). https://doi.org/10.1016/j.memsci.2016.10.045
  8. J. Shen, Size effects of graphene oxide on mixed matrix membranes for CO2 separation, AIChE J., 62(8), 2843-2852 (2016). https://doi.org/10.1002/aic.15260
  9. M. Karunakaran, R. Shevate, M. Kumar, and K. V. Peinemann, CO2-selective PEO-PBT (PolyActivet)/graphene oxide composite membranes, Chem. Commun., 51, 14187-14190 (2015). https://doi.org/10.1039/C5CC04999G
  10. S. Morimune, T. Nishino, and T. Goto, Ecological approach to graphene oxide reinforced poly (methyl methacrylate) nanocomposites, ACS Appl. Mater. Interfaces, 4(7), 3596-3601 (2012). https://doi.org/10.1021/am3006687
  11. L. Dong, M. Chen, J. Li, D. Shi, W. Dong, X. Li, and Y. Bai, Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes, J. Membr. Sci., 502, 801-811 (2016).
  12. R. Casadei, M. G. Baschetti, M. J. Yoo, H. B. Park, and L. Giorgini, Pebax® 2533/graphene oxide nanocomposite membranes for carbon capture, Membranes, 10, 188-208 (2020). https://doi.org/10.3390/membranes10080188
  13. A. Huang and B. Feng, Facile synthesis of PEI-GO@ZIF-8 hybrid material for CO2 capture, Int. J. Hydrogen Energy, 43, 2224-2231 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.070
  14. F. Q. Liu, W. Li, J. Zhao, W. H. Li, D. M. Chen, L. S. Sun, L. Wang, and R. X. Lia, Covalent grafting of polyethyleneimine on hydroxylated three-dimensional graphene for superior CO2 capture, J. Mater. Chem. A, 3(23), 12252-12258 (2015). https://doi.org/10.1039/C5TA01536G
  15. D. Huang, Q. Xin, Y. Ni, Y. Shuai, S. Wang, Y. Li, H. Ye, L. Lin, X. Ding, and Y. Zhang, Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO2 separation, RSC Adv., 8, 6099-6109 (2018). https://doi.org/10.1039/C7RA09794H
  16. H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276-279 (1999). https://doi.org/10.1038/46248
  17. X. Gong, Y. Wang, and T. Kuang, ZIF-8-Based membranes for carbon dioxide capture and separation, ACS Sustainable Chem. Eng., 5, 11204-11214 (2017). https://doi.org/10.1021/acssuschemeng.7b03613
  18. H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, Zeolite a imidazolate frameworks, Nat. Mater., 6, 501-506 (2007). https://doi.org/10.1038/nmat1927
  19. J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos, and G. N. Karanikolos, CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions, Microporous Mesoporous Mater., 267, 53-67 (2018). https://doi.org/10.1016/j.micromeso.2018.03.012
  20. B. Chen, C. Wan, X. Kang, M. Chen, C. Zhang, Y. Bai, and L. Dong, Enhanced CO2 separation of mixed matrix membranes with ZIF-8@GO composites as fillers: Effect of reaction time of ZIF-8@GO, Sep. Purif. Technol., 223, 113-122 (2019). https://doi.org/10.1016/j.seppur.2019.04.063
  21. Y. Hu, J. Wei, Y. Liang, H. Zhang, X. Zhang, W. Shen, and H. Wang, Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes, Angew. Chem. Int. Ed., 55, 2048-2052 (2016). https://doi.org/10.1002/anie.201509213
  22. R. Kumar, K. Jayaramulu, T. K. Maji, and C. N. R. Rao, Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties, Chem. Commun., 49, 4947-4949 (2013). https://doi.org/10.1039/c3cc00136a
  23. R. Kumar, K. Jayaramulu, T. K. Maji, and C. N. R. Rao, Growth of 2D sheets of a MOF on grapheme surfaces to yield composites with novel gas adsorption characteristics, Dalton Trans., 43, 7383-7386 (2014). https://doi.org/10.1039/c3dt53133c
  24. Z. J . Bian, J. Xu, S. P. Zhang, X. M. Zhu, H. L. Liu, and J. Hu, Interfacial growth of metal organic framework/graphite oxide composites through pickering emulsion and their CO2 capture performance in the presence of humidity, Langmuir, 31, 7410-7417 (2015). https://doi.org/10.1021/acs.langmuir.5b01171
  25. X. Qiu, X. Wang, and Y. W. Li, Controlled growth of dense and ordered metal-or-ganic framework nanoparticles on graphene oxide, Chem. Commun., 51, 3874-3877 (2015). https://doi.org/10.1039/C4CC09933H
  26. S. Sridhar, R. Suryamurali, B. Smitha, and T. M. Aminabhavi, Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation, Colloids Surf. A, 297, 267-274 (2007). https://doi.org/10.1016/j.colsurfa.2006.10.054
  27. L. Liu, A. Chakma, and X. Feng, A novel method of preparing ultrathin poly(ether block amide) membranes, J. Membr. Sci., 235, 43-52, (2004). https://doi.org/10.1016/j.memsci.2003.12.025
  28. E. S. Yi and S. R. Hong, Gas permeation characteristics of PEBAXPEI composite membranes containing ZIF-8 modified with amine, Appl. Chem. Eng., 31, 679-687 (2020). https://doi.org/10.14478/ACE.2020.1080
  29. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, Improved synthesis of graphene oxide, ACS nano, 4(8), 4806-4814 (2010). https://doi.org/10.1021/nn1006368
  30. N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, P. S. Goh, D. Rana, and T. Matsuura, Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concetrations of triethylamine, RSC Adv., 4, 33292-33300 (2014). https://doi.org/10.1039/C4RA03593C
  31. K. Zarshenas, A. Raisi, and A. Aroujalian, Mixed matrix membranes of nano-zeolite NaX/poly(ether-block-amide) for gas separation applications, J. Membr. Sci., 510, 270-283 (2016). https://doi.org/10.1016/j.memsci.2016.02.059
  32. I. U. Khan, M. H. D. Othman, A. Jilani, A. F. Ismail, H. Hashim, J. Jaafa, M. A. Rahman, and G. U. Rehman, Economical, environmental friendly synthesis, characterization for the production of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles with enhanced CO2 adsorption, Arab. J. Chem., 11, 1072-1083 (2018). https://doi.org/10.1016/j.arabjc.2018.07.012
  33. W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  34. B. Chen, Y. Zhu, and Y. Xia, Controlled in situ synthesis of graphene oxide/zeolitic imidazolate framework composites with enhanced CO2 uptake capacity, RSC Adv., 5, 30464-30471 (2015). https://doi.org/10.1039/C5RA01183C
  35. D. Zhao, J. Ren, Y. Qiu, H. Li, K. Hua, X. Li, and M. Deng, Effect of graphene oxide on the behavior of poly(amide-6-b-ethylene oxide)/graphen oxide mixed-matrix membrane in the permeation process, J. Appl. Polym. Sci., 132(41), 42624-42633 (2015).
  36. F. Pazani and A. Aroujalian, Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers, Polym. Test., 81, 106264-106274 (2020). https://doi.org/10.1016/j.polymertesting.2019.106264
  37. D. Liu, Y. Wu, Q. Xia, Z. Li, and H. Xi, Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8, Adsorption, 19, 25-37 (2013). https://doi.org/10.1007/s10450-012-9407-1
  38. S. W. Hwang, Y. C. Chung, B. C. Chun, and S. J. Lee, Gas permeability of polyethylene films containing zeolite powder, Polymer (Korea), 28(5), 374-381 (2004).
  39. V. Nafisi and M. B. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci., 459, 244-255 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
  40. L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030