DOI QR코드

DOI QR Code

5-HT1A receptors mediate the analgesic effect of rosavin in a mouse model of oxaliplatin-induced peripheral neuropathic pain

  • Li, Daxian (Department of Physiology, College of Korean Medicine, Kyung Hee University) ;
  • Park, Sangwon (Department of Korean Medicine, Graduate School, Kyung Hee University) ;
  • Lee, Kyungjoon (Department of East-West Medicine, Graduate School, Kyung Hee University) ;
  • Jang, Dae Sik (Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University) ;
  • Kim, Sun Kwang (Department of Physiology, College of Korean Medicine, Kyung Hee University)
  • 투고 : 2021.04.19
  • 심사 : 2021.06.21
  • 발행 : 2021.09.01

초록

Oxaliplatin, a third-generation platinum derivative, is the mainstay of current antineoplastic medications for advanced colorectal cancer therapy. However, peripheral neuropathic complications, especially cold allodynia, undermine the life-prolonging outcome of this anti-cancer agent. Rosavin, a phenylpropanoid derived originally from Rhodiola rosea, exhibits a wide range of therapeutic properties. The present study explored whether and how rosavin alleviates oxaliplatin-induced cold hypersensitivity in mice. In the acetone drop test, cold allodynia behavior was observed from days 3 to 5 after a single injection of oxaliplatin (6 mg/kg, i.p.). Cold allodynia was significantly attenuated following rosavin treatment (10 mg/kg, i.p.). Specific endogenous 5-HT depletion by three consecutive pretreatments with parachlorophenylalanine (150 mg/kg/day, i.p.) abolished the analgesic action of rosavin; this effect was not observed following pretreatment with naloxone (opioid receptor antagonist, 10 mg/kg, i.p.). Furthermore, 5-HT1A receptor antagonist WAY-100635 (0.16 mg/kg, i.p.), but not 5-HT3 receptor antagonist MDL-72222 (1 mg/kg, i.p.), blocked rosavin-induced analgesia. These results suggest that rosavin may provide a novel approach to alleviate oxaliplatin-induced cold allodynia by recruiting the activity of 5-HT1A receptors.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2017M3A9E4057926).

참고문헌

  1. Zajaczkowska R, Kocot-Kepska M, Leppert W, Wrzosek A, Mika J, Wordliczek J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci. 2019;20:1451. https://doi.org/10.3390/ijms20061451
  2. Boyette-Davis JA, Hou S, Abdi S, Dougherty PM. An updated understanding of the mechanisms involved in chemotherapy-induced neuropathy. Pain Manag. 2018;8:363-375. https://doi.org/10.2217/pmt-2018-0020
  3. Starobova H, Vetter I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci. 2017;10:174. https://doi.org/10.3389/fnmol.2017.00174
  4. Kerckhove N, Collin A, Conde S, Chaleteix C, Pezet D, Balayssac D. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front Pharmacol. 2017;8:86. https://doi.org/10.3389/fphar.2017.00086
  5. Choi HM, Jung Y, Park J, Kim HL, Youn DH, Kang J, Jeong MY, Lee JH, Yang WM, Lee SG, Ahn KS, Um JY. Cinnamomi cortex (Cinnamomum verum) suppresses testosterone-induced benign prostatic hyperplasia by regulating 5α-reductase. Sci Rep. 2016;6:31906. https://doi.org/10.1038/srep31906
  6. Hayashi K, Imanishi N, Kashiwayama Y, Kawano A, Terasawa K, Shimada Y, Ochiai H. Inhibitory effect of cinnamaldehyde, derived from Cinnamomi cortex, on the growth of influenza A/PR/8 virus in vitro and in vivo. Antiviral Res. 2007;74:1-8. https://doi.org/10.1016/j.antiviral.2007.01.003
  7. Chae HK, Kim W, Kim SK. Phytochemicals of Cinnamomi Cortex: cinnamic acid, but not cinnamaldehyde, attenuates oxaliplatin-induced cold and mechanical hypersensitivity in rats. Nutrients. 2019;11:432. https://doi.org/10.3390/nu11020432
  8. Kim C, Lee JH, Kim W, Li D, Kim Y, Lee K, Kim SK. The suppressive effects of Cinnamomi Cortex and its phytocompound coumarin on oxaliplatin-induced neuropathic cold allodynia in rats. Molecules. 2016;21:1253. https://doi.org/10.3390/molecules21091253
  9. Perfumi M, Mattioli L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytother Res. 2007;21:37-43. https://doi.org/10.1002/ptr.2013
  10. Chiang HM, Chen HC, Wu CS, Wu PY, Wen KC. Rhodiola plants: chemistry and biological activity. J Food Drug Anal. 2015;23:359-369. https://doi.org/10.1016/j.jfda.2015.04.007
  11. Park JS, Choi J, Kwon JY, Jung KA, Yang CW, Park SH, Cho ML. A probiotic complex, rosavin, zinc, and prebiotics ameliorate intestinal inflammation in an acute colitis mouse model. J Transl Med. 2018;16:37. https://doi.org/10.1186/s12967-018-1410-1
  12. Panossian AG, Efferth T, Shikov AN, Pozharitskaya ON, Kuchta K, Mukherjee PK, Banerjee S, Heinrich M, Wu W, Guo DA, Wagner H. Evolution of the adaptogenic concept from traditional use to medical systems: pharmacology of stress- and aging-related diseases. Med Res Rev. 2021;41:630-703. https://doi.org/10.1002/med.21743
  13. Stancheva SL, Mosharrof A. Effect of the extract of Rhodiola rosea L. on the content of the brain biogenic monamines. Med Physiol. 1987;40:85-87.
  14. Chen QG, Zeng YS, Qu ZQ, Tang JY, Qin YJ, Chung P, Wong R, Hagg U. The effects of Rhodiola rosea extract on 5-HT level, cell proliferation and quantity of neurons at cerebral hippocampus of depressive rats. Phytomedicine. 2009;16:830-838. https://doi.org/10.1016/j.phymed.2009.03.011
  15. Lishmanov IuB, Trifonova ZhV, Tsibin AN, Maslova LV, Dement'eva LA. [Plasma beta-endorphin and stress hormones in stress and adaptation]. Biull Eksp Biol Med. 1987;103:422-424. Russian.
  16. Montiel-Ruiz RM, Gonzalez-Trujano ME, Deciga-Campos M. Synergistic interactions between the antinociceptive effect of Rhodiola rosea extract and B vitamins in the mouse formalin test. Phytomedicine. 2013;20:1280-1287. https://doi.org/10.1016/j.phymed.2013.07.006
  17. Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66:355-474. https://doi.org/10.1016/S0301-0082(02)00009-6
  18. Nguyen LM, Rhondali W, De la Cruz M, Hui D, Palmer L, Kang DH, Parsons HA, Bruera E. Frequency and predictors of patient deviation from prescribed opioids and barriers to opioid pain management in patients with advanced cancer. J Pain Symptom Manage. 2013;45:506-516. https://doi.org/10.1016/j.jpainsymman.2012.02.023
  19. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109-110. https://doi.org/10.1016/0304-3959(83)90201-4
  20. Li D, Lee JH, Choi CW, Kim J, Kim SK, Kim W. The analgesic effect of venlafaxine and its mechanism on oxaliplatin-induced neuropathic pain in mice. Int J Mol Sci. 2019;20:1652. https://doi.org/10.3390/ijms20071652
  21. Li D, Lee Y, Kim W, Lee K, Bae H, Kim SK. Analgesic effects of Bee Venom derived phospholipase A2 in a mouse model of oxaliplatin-induced neuropathic pain. Toxins (Basel). 2015;7:2422-2434. https://doi.org/10.3390/toxins7072422
  22. Li D, Chung G, Kim SK. The involvement of central noradrenergic pathway in the analgesic effect of bee venom acupuncture on vincristine-induced peripheral neuropathy in rats. Toxins (Basel). 2020;12:775. https://doi.org/10.3390/toxins12120775
  23. Nakagawa T, Minami M, Katsumata S, Ienaga Y, Satoh M. Suppression of naloxone-precipitated withdrawal jumps in morphine-dependent mice by stimulation of prostaglandin EP3 receptor. Br J Pharmacol. 1995;116:2661-2666. https://doi.org/10.1111/j.1476-5381.1995.tb17223.x
  24. Choi S, Chae HK, Heo H, Hahm DH, Kim W, Kim SK. Analgesic effect of melittin on oxaliplatin-induced peripheral neuropathy in rats. Toxins (Basel). 2019;11:396. https://doi.org/10.3390/toxins11070396
  25. Sung SH, Kim JW, Han JE, Shin BC, Park JK, Lee G. Animal venom for medical usage in pharmacopuncture in Korean medicine: current status and clinical implication. Toxins (Basel). 2021;13:105. https://doi.org/10.3390/toxins13020105
  26. Kwon JY, Lee SH, Jhun J, Choi J, Jung K, Cho KH, Kim SJ, Yang CW, Park SH, Cho ML. The combination of probiotic complex, rosavin, and zinc improves pain and cartilage destruction in an osteoarthritis rat model. J Med Food. 2018;21:364-371. https://doi.org/10.1089/jmf.2017.4034
  27. Deciga-Campos M, Gonzalez-Trujano ME, Ventura-Martinez R, Montiel-Ruiz RM, Angeles-Lopez GE, Brindis F. Antihyperalgesic activity of Rhodiola rosea in a diabetic rat model. Drug Dev Res. 2016;77:29-36. https://doi.org/10.1002/ddr.21289
  28. Polter AM, Li X. 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal. 2010;22:1406-1412. https://doi.org/10.1016/j.cellsig.2010.03.019
  29. Otoshi CK, Walwyn WM, Tillakaratne NJ, Zhong H, Roy RR, Edgerton VR. Distribution and localization of 5-HT1A receptors in the rat lumbar spinal cord after transection and deafferentation. J Neurotrauma. 2009;26:575-584. https://doi.org/10.1089/neu.2008.0640
  30. Oyama T, Ueda M, Kuraishi Y, Akaike A, Satoh M. Dual effect of serotonin on formalin-induced nociception in the rat spinal cord. Neurosci Res. 1996;25:129-135. https://doi.org/10.1016/0168-0102(96)01034-6
  31. Lee JH, Min D, Lee D, Kim W. Zingiber officinale roscoe rhizomes attenuate oxaliplatin-induced neuropathic pain in mice. Molecules. 2021;26:548. https://doi.org/10.3390/molecules26030548
  32. Liu Z, Li X, Simoneau AR, Jafari M, Zi X. Rhodiola rosea extracts and salidroside decrease the growth of bladder cancer cell lines via inhibition of the mTOR pathway and induction of autophagy. Mol Carcinog. 2012;51:257-267. https://doi.org/10.1002/mc.20780
  33. Udintsev SN, Shakhov VP. [Decrease in the growth rate of Ehrlich's tumor and Pliss' lymphosarcoma with partial hepatectomy]. Vopr Onkol. 1989;35:1072-1075. Russian.