DOI QR코드

DOI QR Code

Curcumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation

  • Yang, Lu (Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Chen, Xiaoxiang (Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Bi, Zirong (Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Liao, Jun (Department of Organ Transplantation, Zhujiang Hospital of Southern Medical University) ;
  • Zhao, Weian (Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Huang, Wenqi (Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University)
  • 투고 : 2021.02.15
  • 심사 : 2021.06.11
  • 발행 : 2021.09.01

초록

Apoptosis is proved responsible for renal damage during ischemia/reperfusion. The regulation for renal apoptosis induced by ischemia/reperfusion injury (IRI) has still been unclearly characterized to date. In the present study, we investigated the regulation of histone acetylation on IRI-induced renal apoptosis and the molecular mechanisms in rats with the application of curcumin possessing a variety of biological activities involving inhibition of apoptosis. Sprague-Dawley rats were randomized into four experimental groups (SHAM, IRI, curcumin, SP600125). Results showed that curcumin significantly decreased renal apoptosis and caspase-3/-9 expression and enhanced renal function in IRI rats. Treatment with curcumin in IRI rats also led to the decrease in expression of p300/cyclic AMP response element-binding protein (CBP) and activity of histone acetyltransferases (HATs). Reduced histone H3 lysine 9 (H3K9) acetylation was found near the promoter region of caspase-3/-9 after curcumin treatment. In a similar way, SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), also attenuated renal apoptosis and enhanced renal function in IRI rats. In addition, SP600125 suppressed the binding level of p300/CBP and H3K9 acetylation near the promoter region of caspase-3/-9, and curcumin could inhibit JNK phosphorylation like SP600125. These results indicate that curcumin could attenuate renal IRI via JNK/p300/CBP-mediated anti-apoptosis signaling.

키워드

과제정보

This study was supported by research grants from National Natural Science Foundation of China (Grant No. 81770619).

참고문헌

  1. Saat TC, van den Akker EK, IJzermans JN, Dor FJ, de Bruin RW. Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: lost in translation? J Transl Med. 2016;14:20. https://doi.org/10.1186/s12967-016-0767-2
  2. Ditonno P, Impedovo SV, Palazzo S, Bettocchi C, Gesualdo L, Grandaliano G, Selvaggi FP, Battaglia M. Effects of ischemia-reperfusion injury in kidney transplantation: risk factors and early and longterm outcomes in a single center. Transplant Proc. 2013;45:2641-2644. https://doi.org/10.1016/j.transproceed.2013.07.025
  3. Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol. 2014;10:193-207. https://doi.org/10.1038/nrneph.2013.282
  4. Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerda J, Chawla LS. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14:607-625. https://doi.org/10.1038/s41581-018-0052-0
  5. Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 2003;14:1549-1558. https://doi.org/10.1097/01.ASN.0000064946.94590.46
  6. Awad AS, El-Sharif AA. Curcumin immune-mediated and anti-apoptotic mechanisms protect against renal ischemia/reperfusion and distant organ induced injuries. Int Immunopharmacol. 2011;11:992-996. https://doi.org/10.1016/j.intimp.2011.02.015
  7. Bonegio R, Lieberthal W. Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens. 2002;11:301-308. https://doi.org/10.1097/00041552-200205000-00006
  8. Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012;2:1303-1353. https://doi.org/10.1002/cphy.c110041
  9. Zhao Y, Ding C, Xue W, Ding X, Zheng J, Gao Y, Xia X, Li S, Liu J, Han F, Zhu F, Tian P. Genome-wide DNA methylation analysis in renal ischemia reperfusion injury. Gene. 2017;610:32-43. https://doi.org/10.1016/j.gene.2017.02.005
  10. Fontecha-Barriuso M, Martin-Sanchez D, Ruiz-Andres O, Poveda J, Sanchez-Nino MD, Valino-Rivas L, Ruiz-Ortega M, Ortiz A, Sanz AB. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol Dial Transplant. 2018;33:1875-1886. https://doi.org/10.1093/ndt/gfy009
  11. Guo C, Dong G, Liang X, Dong Z. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol. 2019;15:220-239. https://doi.org/10.1038/s41581-018-0103-6
  12. Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15:703-708. https://doi.org/10.1038/nrm3890
  13. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 2006;311:844-847. https://doi.org/10.1126/science.1124000
  14. Tang J, Zhuang S. Histone acetylation and DNA methylation in ischemia/reperfusion injury. Clin Sci (Lond). 2019;133:597-609. https://doi.org/10.1042/CS20180465
  15. Bomsztyk K, Denisenko O. Epigenetic alterations in acute kidney injury. Semin Nephrol. 2013;33:327-340.
  16. Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8:a019521. https://doi.org/10.1101/cshperspect.a019521
  17. Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang X, Chen C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol. 2016;32:469-482. https://doi.org/10.1007/s10565-016-9347-8
  18. Li D, Zeng Z. Epigenetic regulation of histone H3 in the process of hepatocellular tumorigenesis. Biosci Rep. 2019;39:BSR20191815. https://doi.org/10.1042/BSR20191815
  19. Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta Med. 1991;57:1-7. https://doi.org/10.1055/s-2006-960004
  20. Marcu MG, Jung YJ, Lee S, Chung EJ, Lee MJ, Trepel J, Neckers L. Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem. 2006;2:169-174. https://doi.org/10.2174/157340606776056133
  21. Wang X, Muhammad I, Sun X, Han M, Hamid S, Zhang X. Protective role of curcumin in ameliorating AFB1-induced apoptosis via mitochondrial pathway in liver cells. Mol Biol Rep. 2018;45:881-891. https://doi.org/10.1007/s11033-018-4234-4
  22. Yu W, Zha W, Ke Z, Min Q, Li C, Sun H, Liu C. Curcumin protects neonatal rat cardiomyocytes against high glucose-induced apoptosis via PI3K/Akt signalling pathway. J Diabetes Res. 2016;2016:4158591.
  23. Kunduzova OR, Bianchi P, Pizzinat N, Escourrou G, Seguelas MH, Parini A, Cambon C. Regulation of JNK/ERK activation, cell apoptosis, and tissue regeneration by monoamine oxidases after renal ischemia-reperfusion. FASEB J. 2002;16:1129-1131. https://doi.org/10.1096/fj.01-1008fje
  24. Wu J, Zhang X, Nauta HJ, Lin Q, Li J, Fang L. JNK1 regulates histone acetylation in trigeminal neurons following chemical stimulation. Biochem Biophys Res Commun. 2008;376:781-786. https://doi.org/10.1016/j.bbrc.2008.09.073
  25. Bayrak O, Uz E, Bayrak R, Turgut F, Atmaca AF, Sahin S, Yildirim ME, Kaya A, Cimentepe E, Akcay A. Curcumin protects against ischemia/reperfusion injury in rat kidneys. World J Urol. 2008;26:285-291. https://doi.org/10.1007/s00345-008-0253-4
  26. Wu J, Pan X, Fu H, Zheng Y, Dai Y, Yin Y, Chen Q, Hao Q, Bao D, Hou D. Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci Rep. 2017;7:10114. https://doi.org/10.1038/s41598-017-10693-4
  27. Xu YF, Liu M, Peng B, Che JP, Zhang HM, Yan Y, Wang GC, Wu YC, Zheng JH. Protective effects of SP600125 on renal ischemiareperfusion injury in rats. J Surg Res. 2011;169:e77-e84. https://doi.org/10.1016/j.jss.2011.02.021
  28. Zhao W, Wu X, Wang Z, Pan B, Liu L, Liu L, Huang X, Tian J. Epigenetic regulation of phosphodiesterase 4d in restrictive cardiomyopathy mice with cTnI mutations. Sci China Life Sci. 2020;63:563-570. https://doi.org/10.1007/s11427-018-9463-9
  29. Zhou W, Jiang D, Tian J, Liu L, Lu T, Huang X, Sun H. Acetylation of H3K4, H3K9, and H3K27 mediated by p300 regulates the expression of GATA4 in cardiocytes. Genes Dis. 2018;6:318-325. https://doi.org/10.1016/j.gendis.2018.10.002
  30. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15:195-218. https://doi.org/10.1208/s12248-012-9432-8
  31. Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis. 2014;232:40-51. https://doi.org/10.1016/j.atherosclerosis.2013.10.016
  32. Cekmen M, Ilbey YO, Ozbek E, Simsek A, Somay A, Ersoz C. Curcumin prevents oxidative renal damage induced by acetaminophen in rats. Food Chem Toxicol. 2009;47:1480-1484. https://doi.org/10.1016/j.fct.2009.03.034
  33. Zhang J, Tang L, Li GS, Wang J. The anti-inflammatory effects of curcumin on renal ischemia-reperfusion injury in rats. Ren Fail. 2018;40:680-686. https://doi.org/10.1080/0886022X.2018.1544565
  34. Ibrahim SG, El-Emam SZ, Mohamed EA, Abd Ellah MF. Dimethyl fumarate and curcumin attenuate hepatic ischemia/reperfusion injury via Nrf2/HO-1 activation and anti-inflammatory properties. Int Immunopharmacol. 2020;80:106131. https://doi.org/10.1016/j.intimp.2019.106131
  35. Yeh CH, Chen TP, Wu YC, Lin YM, Jing Lin P. Inhibition of NFkappaB activation with curcumin attenuates plasma inflammatory cytokines surge and cardiomyocytic apoptosis following cardiac ischemia/reperfusion. J Surg Res. 2005;125:109-116. https://doi.org/10.1016/j.jss.2004.11.009
  36. Mokhtari-Zaer A, Marefati N, Atkin SL, Butler AE, Sahebkar A. The protective role of curcumin in myocardial ischemia-reperfusion injury. J Cell Physiol. 2018;234:214-222. https://doi.org/10.1002/jcp.26848
  37. Boyanapalli SS, Kong AT. "Curcumin, the King of Spices": epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr Pharmacol Rep. 2015;1:129-139. https://doi.org/10.1007/s40495-015-0018-x
  38. Jankauskas SS, Pevzner IB, Andrianova NV, Zorova LD, Popkov VA, Silachev DN, Kolosova NG, Plotnikov EY, Zorov DB. The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy. Sci Rep. 2017;7:44430. https://doi.org/10.1038/srep44430
  39. Zager RA, Johnson AC, Becker K. Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and "end-stage" kidney disease. Am J Physiol Renal Physiol. 2011;301:F1334-F1345. https://doi.org/10.1152/ajprenal.00431.2011
  40. Bomsztyk K, Flanagin S, Mar D, Mikula M, Johnson A, Zager R, Denisenko O. Synchronous recruitment of epigenetic modifiers to endotoxin synergistically activated Tnf-α gene in acute kidney injury. PLoS One. 2013;8:e70322. https://doi.org/10.1371/journal.pone.0070322
  41. Evankovich J, Cho SW, Zhang R, Cardinal J, Dhupar R, Zhang L, Klune JR, Zlotnicki J, Billiar T, Tsung A. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem. 2010;285:39888-39897. https://doi.org/10.1074/jbc.M110.128348
  42. Li J, Chen P, Sinogeeva N, Gorospe M, Wersto RP, Chrest FJ, Barnes J, Liu Y. Arsenic trioxide promotes histone H3 phosphoacetylation at the chromatin of CASPASE-10 in acute promyelocytic leukemia cells. J Biol Chem. 2002;277:49504-49510. https://doi.org/10.1074/jbc.M207836200
  43. Yan X, Pan B, Lv T, Liu L, Zhu J, Shen W, Huang X, Tian J. Inhibition of histone acetylation by curcumin reduces alcohol-induced fetal cardiac apoptosis. J Biomed Sci. 2017;24:1. https://doi.org/10.1186/s12929-016-0310-z
  44. Peng C, Zhang W, Zhao W, Zhu J, Huang X, Tian J. Alcohol-induced histone H3K9 hyperacetylation and cardiac hypertrophy are reversed by a histone acetylases inhibitor anacardic acid in developing murine hearts. Biochimie. 2015;113:1-9. https://doi.org/10.1016/j.biochi.2015.03.012
  45. Tesch GH, Ma FY, Nikolic-Paterson DJ. ASK1: a new therapeutic target for kidney disease. Am J Physiol Renal Physiol. 2016;311:F373-F381. https://doi.org/10.1152/ajprenal.00208.2016
  46. Kanellis J, Ma FY, Kandane-Rathnayake R, Dowling JP, Polkinghorne KR, Bennett BL, Friedman GC, Nikolic-Paterson DJ. JNK signalling in human and experimental renal ischaemia/reperfusion injury. Nephrol Dial Transplant. 2010;25:2898-2908. https://doi.org/10.1093/ndt/gfq147
  47. Wang Y, Wang Y, Luo M, Wu H, Kong L, Xin Y, Cui W, Zhao Y, Wang J, Liang G, Miao L, Cai L. Novel curcumin analog C66 prevents diabetic nephropathy via JNK pathway with the involvement of p300/CBP-mediated histone acetylation. Biochim Biophys Acta. 2015;1852:34-46. https://doi.org/10.1016/j.bbadis.2014.11.006
  48. Fiorillo C, Becatti M, Pensalfini A, Cecchi C, Lanzilao L, Donzelli G, Nassi N, Giannini L, Borchi E, Nassi P. Curcumin protects cardiac cells against ischemia-reperfusion injury: effects on oxidative stress, NF-kappaB, and JNK pathways. Free Radic Biol Med. 2008;45:839-846. https://doi.org/10.1016/j.freeradbiomed.2008.06.013