DOI QR코드

DOI QR Code

주의력결핍 과잉행동장애 치료제 개발을 위한 카테콜아민계 표적화

Targeting Catecholamines to Develop New Drugs for Attention Deficit Hyperactivity Disorder

  • 정성철 (제주대학교 의과대학 생리학교실) ;
  • 조창환 (제주대학교 의과대학 생리학교실) ;
  • 김혜지 (제주대학교 의과대학 생리학교실) ;
  • 고은아 (제주대학교 의과대학 생리학교실) ;
  • 하민우 (제주대학교 차세대융복합과학기술협동과정) ;
  • 권오빈 (대구경북첨단의료산업진흥재단 신약개발지원센터)
  • Sung-Cherl Jung (Department of Physiology, Jeju National University College of Medicine) ;
  • Chang-Hwan Cho (Department of Physiology, Jeju National University College of Medicine) ;
  • Hye-Ji Kim (Department of Physiology, Jeju National University College of Medicine) ;
  • Eun-A Ko (Department of Physiology, Jeju National University College of Medicine) ;
  • Min-Woo Ha (Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University) ;
  • Oh-Bin Kwon (New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation)
  • 투고 : 2021.07.29
  • 심사 : 2021.12.06
  • 발행 : 2021.12.30

초록

The prevalence of attention deficit hyperactivity disorder (ADHD), a developmental neuropsychiatric disorder, is high among children and adolescents. The pathogenesis of ADHD is mediated with genetic, biological, and environmental factors. Most therapeutic drugs for ADHD have so far targeted biological causes, primarily by regulating catecholaminergic neurotransmitters. However, ADHD drugs that are clinically treated have various problems in their addictiveness and drug stability; thus, it is recommended that efficacy and safety should be secured through simultaneous prescription of multiple drugs rather than a single drug treatment. Accordingly, it is necessary to develop drugs that newly target pathogenic mechanisms of ADHD. In this study, we attempt to confirm the possibility of developing new drugs by reviewing dopamine-related developmental mechanisms of neurons and their correlation with ADHD. Histone deacetylase inhibitors (HDACi) can regulate the concentration of intracellular dopamine in neurons by expressing vesicular monoamine transporter 2 and inducing the exocytosis of neurotransmitters to the synaptic cleft, thereby promoting the development of neurons and signal transmission. This cellular modulation of HDACi is expected to treat ADHD by regulating endogenous catecholamines such as dopamine. Although studies are still in the preclinical stage, HDAC inhibitors clearly have potential as a therapeutic agent with low addictiveness and high efficacy for ADHD treatment.

키워드

과제정보

The work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.NRF-2016R1D1A1B0101086).

참고문헌

  1. Weissenberger S, Schonova K, Buttiker P, Fazio R, Vnukova M, Stefano GB, et al. Time perception is a focal symptom of attention-deficit/hyperactivity disorder in adults. Med Sci Monit 2021;27:e933766.
  2. Health Insurance Review & Assessment Service. Children and adolescent attention deficit hyperactivity disorder [Intetnet]. Wonju: Health Insurance Review & Assessment Service; c2012 [cited 2018 Dec 12]. Available from: http://www.hira.or.kr/bbsDummy.do?pgmid=HIRAA020041000100&brdScnBltNo=4&brdBltNo=8322
  3. World Health Organization. International classification of diseases 11th revision (ICD-11) [Internet]. Geneva: World Health Organization; c2018 [cited 2020 Dec 17]. Available from: https://icd.who.int/en
  4. The Korean Academy of Child and Adolescent Psychiatry. Survey of adult ADHD: recognition and treatment status [Internet]. Seoul: The Korean Academy of Child and Adolescent Psychiatry; c2017 [cited 2021 Jan 21]. Available from: http://www.mdon.co.kr/news/article.html?no=13012
  5. Loke H, Harley V, Lee J. Biological factors underlying sex differences in neurological disorders. Int J Biochem Cell Biol 2015;65:139-50.
  6. Wehry AM, Ramsey L, Dulemba SE, Mossman SA, Strawn JR. Pharmacogenomic testing in child and adolescent psychiatry: an evidence-based review. Curr Probl Pediatr Adolesc Health Care 2018;48:40-9.
  7. Swales DA, Stout-Oswald SA, Glynn LM, Sandman C, Wing DA, Davis EP. Exposure to traumatic events in childhood predicts cortisol production among high risk pregnant women. Biol Psychol 2018;139:186-92.
  8. Slopen N, Zhang J, Urlacher SS, De Silva G, Mittal M. Maternal experiences of intimate partner violence and C-reactive protein levels in young children in Tanzania. SSM Popul Health 2018;6:107-15.
  9. Keresztes A, Raffington L, Bender AR, Bogl K, Heim C, Shing YL. Hair cortisol concentrations are associated with hippocampal subregional volumes in children. Sci Rep 2020;10:4865.
  10. Mateos RM, Jimenez G, Alvarez-Gil C, Visiedo F, Rivera-Rodriguez F, Santos-Rosendo C, et al. Excess hydrocortisone hampers placental nutrient uptake disrupting cellular metabolism. Biomed Res Int 2018;2018:5106174.
  11. Buske-Kirschbaum A, Schmitt J, Plessow F, Romanos M, Weidinger S, Roessner V. Psychoendocrine and psychoneuroimmunological mechanisms in the comorbidity of atopic eczema and attention deficit/hyperactivity disorder. Psychoneuroendocrinology 2013;38:12-23.
  12. Pervanidou P, Chrousos GP. Early-life stress: from neuroendocrine mechanisms to stress-related disorders. Horm Res Paediatr 2018;89:372-9.
  13. Blum K, Chen AL, Braverman ER, Comings DE, Chen TJ, Arcuri V, et al. Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatr Dis Treat 2008;4:893-918.
  14. Wyciszkiewicz A, Pawlak MA, Krawiec K. Cerebellar volume in children with attention-deficit hyperactivity disorder (ADHD). J Child Neurol 2017;32:215-21.
  15. van Wingen GA, van den Brink W, Veltman DJ, Schmaal L, Dom G, Booij J, et al. Reduced striatal brain volumes in non-medicated adult ADHD patients with comorbid cocaine dependence. Drug Alcohol Depend 2013;131:198-203.
  16. Purves-Tyson TD, Owens SJ, Double KL, Desai R, Handelsman DJ, Weickert CS. Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway. PLoS One 2014;9:e91151.
  17. Joseph N, Zhang-James Y, Perl A, Faraone SV. Oxidative stress and ADHD: a meta-analysis. J Atten Disord 2015;19:915-24.
  18. Sezen H, Kandemir H, Savik E, Basmaci Kandemir S, Kilicaslan F, Bilinc H, et al. Increased oxidative stress in children with attention deficit hyperactivity disorder. Redox Rep 2016;21:248-53.
  19. Kweon K. Pharmacological treatment for attention deficit hyperactivity disorder in adults. J Korean Med Assoc 2021;64:49-56.
  20. Pliszka SR, Crismon ML, Hughes CW, Corners CK, Emslie GJ, Jensen PS, et al. The Texas children's medication algorithm project: revision of the algorithm for pharmacotherapy of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2006;45:642-57.
  21. Molina BSG, Joseph HM, Kipp HL, Lindstrom RA, Pedersen SL, Kolko DJ, et al. Adolescents treated for attention-deficit/hyperactivity disorder in pediatric primary care: characterizing risk for stimulant diversion. J Dev Behav Pediatr 2021;42:540-52.
  22. Cunill R, Castells X, Gonzalez-Pinto A, Arrojo M, Bernardo M, Saiz PA, et al. Clinical practice guideline on pharmacological and psychological management of adult patients with attention deficit and hyperactivity disorder and comorbid substance use. Adicciones 2021 Jun 14 [Epub ahead of print]. doi: 10.20882/adicciones.1569.
  23. Rando J, McEnroe M. KemPharm announces FDA approval of AZSTARYSTM (serdexmethylphenidate and dexmethylphenidate capsules, for oral use, CII), a new once-daily treatment for ADHD [Internet]. Celebration (FL): KemPharm; c2021 [cited 2021 Jun 21]. Available from: https://investors.kempharm.com/news-releases/news-release-details/kempharm-announces-fda-approval-azstarystm-serdexmethylphenidate
  24. Khattar JA, Kelly J. Supernus announces FDA approval of QelbreeTM (SPN-812) for the treatment of ADHD [Internet]. Rockville (MD): Supernus Pharmaceuticals, Inc; c2021 [cited 2021 Jun 21]. Available from: https://ir.supernus.com/news-releases/news-release-details/supernus-announces-fda-approval-qelbreetm-spn-812-treatment-adhd
  25. Storebo OJ, Pedersen N, Ramstad E, Kielsholm ML, Nielsen SS, Krogh HB, et al. Methylphenidate for attention deficit hyperactivity disorder (ADHD) in children and adolescents - assessment of adverse events in non-randomised studies. Cochrane Database Syst Rev 2018;5:CD012069.
  26. Nazzari S, Fearon P, Rice F, Dottori N, Ciceri F, Molteni M, et al. Beyond the HPA-axis: exploring maternal prenatal influences on birth outcomes and stress reactivity. Psychoneuroendocrinology 2019;101:253-62.
  27. Fatima M, Srivastav S, Mondal AC. Prenatal stress and depression associated neuronal development in neonates. Int J Dev Neurosci 2017;60:1-7.
  28. Iijima M, Ito A, Kurosu S, Chaki S. Pharmacological characterization of repeated corticosterone injection-induced depression model in rats. Brain Res 2010;1359:75-80.
  29. Bairos-Novak KR, Ryan CP, Freeman AR, Anderson WG, Hare JF. Like mother, like daughter: heritability of female Richardson's ground squirrel Urocitellus richardsonii cortisol stress responses. Curr Zool 2018;64:153-63.
  30. Gong Y, Sun XL, Wu FF, Su CJ, Ding JH, Hu G. Female early adult depression results in detrimental impacts on the behavioral performance and brain development in offspring. CNS Neurosci Ther 2012;18:461-70.
  31. Takai Y, Kawai M, Ogo T, Ichinose T, Furuya S, Takaki N, et al. Early-life photoperiod influences depression-like behavior, prepulse inhibition of the acoustic startle response, and hippocampal astrogenesis in mice. Neuroscience 2018;374:133-43.
  32. Bogi E, Belovicova K, Ujhazy E, Mach M, Koprdova R, Zilava L, et al. Perinatal exposure to venlafaxine leads to lower anxiety and depression-like behavior in the adult rat offspring. Behav Pharmacol 2018;29:445-52.
  33. Lautarescu A, Craig MC, Glover V. Prenatal stress: effects on fetal and child brain development. Int Rev Neurobiol 2020;150:17-40.
  34. Kozlowska A, Wojtacha P, Rowniak M, Kolenkiewicz M, Tsai ML. Differences in serum steroid hormones concentrations in spontaneously hypertensive rats (SHR) - an animal model of attention-deficit/hyperactivity disorder (ADHD). Physiol Res 2019;68:25-36.
  35. Jeon SC, Kim HJ, Ko EA, Jung SC. Prenatal exposure to high cortisol induces ADHD-like behaviors with delay in spatial cognitive functions during the post-weaning period in rats. Exp Neurobiol 2021;30:87-100.
  36. Grunblatt E, Bartl J, Iuhos DI, Knezovic A, Trkulja V, Riederer P, et al. Characterization of cognitive deficits in spontaneously hypertensive rats, accompanied by brain insulin receptor dysfunction. J Mol Psychiatry 2015;3:6.
  37. Johnson AC, Miller JE, Cipolla MJ. Memory impairment in spontaneously hypertensive rats is associated with hippocampal hypoperfusion and hippocampal vascular dysfunction. J Cereb Blood Flow Metab 2020;40:845-59.
  38. Raz L, Yang Y, Thompson J, Hobson S, Pesko J, Mobashery S, et al. MMP-9 inhibitors impair learning in spontaneously hypertensive rats. PLoS One 2018;13:e0208357.
  39. Kim J, Park H, Yu SL, Jee S, Cheon KA, Song DH, et al. Effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) on spontaneously hypertensive rats, an animal model of attention-deficit/hyperactivity disorder. Int J Dev Neurosci 2016;53:83-9.
  40. de Bartolomeis A, Tomasetti C. Calcium-dependent networks in dopamine-glutamate interaction: the role of postsynaptic scaffolding proteins. Mol Neurobiol 2012;46:275-96.
  41. Szewczyk B, Pochwat B, Rafalo A, Palucha-Poniewiera A, Domin H, Nowak G. Activation of mTOR dependent signaling pathway is a necessary mechanism of antidepressant-like activity of zinc. Neuropharmacology 2015;99:517-26.
  42. Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed Pharmacother 2021;134:111119.
  43. Ramirez AD, Smith SM. Regulation of dopamine signaling in the striatum by phosphodiesterase inhibitors: novel therapeutics to treat neurological and psychiatric disorders. Cent Nerv Syst Agents Med Chem 2014;14:72-82.
  44. Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science 2017;357:1255-61.
  45. Banerjee K, Munshi S, Sen O, Pramanik V, Roy Mukherjee T, Chakrabarti S. Dopamine cytotoxicity involves both oxidative and nonoxidative pathways in SH-SY5Y cells: potential role of alpha-synuclein overexpression and proteasomal inhibition in the etiopathogenesis of Parkinson's disease. Parkinsons Dis 2014;2014:878935.
  46. Lohr KM, Miller GW. VMAT2 and Parkinson's disease: harnessing the dopamine vesicle. Expert Rev Neurother 2014;14:1115-7.
  47. Lorenzo-Sanz G, Sanchez-Herranz A. Involvement of vesicular monoamine transporter in attention deficit hyperactivity disorder. Rev Neurol 2011;52 Suppl 1:S103-8.
  48. Zalsman G, Aslanov-Farbstein D, Rehavi M, Roz N, Vermeiren R, Laor N, et al. Platelet vesicular monoamine transporter 2 density in the disruptive behavior disorders. J Child Adolesc Psychopharmacol 2011;21:341-4.
  49. Zhang L, Lei J, Shan Y, Yang H, Song M, Ma Y. Recent progress in the development of histone deacetylase inhibitors as anti-cancer agents. Mini Rev Med Chem 2013;13:1999-2013.
  50. Lopez-Atalaya JP, Ito S, Valor LM, Benito E, Barco A. Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition. Nucleic Acids Res 2013;41:8072-84.
  51. Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schluter OM, Bradke F, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Mol Med 2013;5:52-63.
  52. Ershadi ASB, Amini-Khoei H, Hosseini MJ, Dehpour AR. SAHA improves depressive symptoms, cognitive impairment and oxidative stress: rise of a new antidepressant class. Neurochem Res 2021;46:1252-63.
  53. Kimijima H, Miyagawa K, Kurokawa K, Mochida-Saito A, Takahashi K, Takeda H, et al. Trichostatin A, a histone deacetylase inhibitor, alleviates the emotional abnormality induced by maladaptation to stress in mice. Neurosci Lett 2022;766:136340. 
  54. Ma K, Qin L, Matas E, Duffney LJ, Liu A, Yan Z. Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology 2018;43:1779-88.
  55. Biederman J, Monuteaux MC, Mick E, Spencer T, Wilens TE, Silva JM, et al. Young adult outcome of attention deficit hyperactivity disorder: a controlled 10-year follow-up study. Psychol Med 2006;36:167-79.
  56. Sobanski E, Bruggemann D, Alm B, Kern S, Deschner M, Schubert T, et al. Psychiatric comorbidity and functional impairment in a clinically referred sample of adults with attention-deficit/hyperactivity disorder (ADHD). Eur Arch Psychiatry Clin Neurosci 2007;257:371-7.