DOI QR코드

DOI QR Code

Optimal design of mixing ratios of modifiers for disintegrated carbonaceous mudstone

  • Zeng, Ling (School of Civil Engineering, Changsha University of Science & Technology) ;
  • Zha, Huan-Yi (School of Civil Engineering, Changsha University of Science & Technology) ;
  • Gao, Qian-Feng (School of Traffic & Transportation Engineering, Changsha University of Science & Technology)
  • Received : 2019.10.24
  • Accepted : 2021.08.10
  • Published : 2021.08.25

Abstract

Under the effect of load and seasonal rainfall, the disintegrated carbonaceous mudstone (DCM) softens and further disintegrates, causing large settlements and even collapses of the DCM embankments. For this reason, some treatments should be taken to improve the engineering performance of the DCM. In this study, four materials including sodium alginate (SA), calcium chloride (CaCl2), bentonite and nano-Al2O3 were jointly used as modifiers to treat the DCM. The influences of each modifier component on the unconfined compressive strength (UCS), cohesion, angle of internal friction, and coefficient of permeability of the DCM were examined by unconfined compression tests, direct shear tests and permeability tests. The results demonstrated that with the addition of modifiers, the UCS, cohesion and angle of internal friction of the DCM are enhanced, whereas the coefficient of permeability is reduced. The sensitivity analysis showed that the dosage of SA is the dominating factor affecting the engineering performance of the DCM. Thus, special attention should be paid to the dosage of SA when improving the DCM. On the other hand, bentonite is the least important factor for most of the examined engineering properties among the four modifier components. An UCS value that is greater than 1500 kPa was selected as the evaluation criterion, and the stress-strain relationship and failure mode of each sample under unconfined compression were examined. On this basis, eight groups of satisfactory mixing ratios were obtained for the modification of the DCM. It is suggested that when designing mixing ratios of modifiers for the DCM, the recommended SA/DCM ratio is 4%-6%, but the quantities of CaCl2, bentonite and nano-Al2O3 can be adjusted according to the needs and costs.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 51838001, 51878070, 51908069, 51908073 and 52008041), the Research and Development Projects in Key Fields of Hunan Province, China (No. 2019SK2171), and the Graduate Student Innovation Project of Hunan Province, China (CX 20200838).

References

  1. ASTM. D2166/D2166M-13 (2013), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  2. ASTM. D6528-07 (2007), Standard test method for consolidated undrained direct simple shear testing of cohesive soils, West Conshohocken, Pennsylvania, U.S.A.
  3. ASTM.D5084-16a (2016), Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials using a Flexible Wall Permeameter, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  4. Benhouria, A., Islam, M.A., Zaghouane-Boudiaf, H., Boutahala, M. and Hameed, B.H. (2015), "Calcium alginate-bentonite- activated carbon composite beads as highly effective adsorbent for methylene blue", Chem. Eng. J., 270, 621-630. https://doi.org/10.1016/j.cej.2015.02.030.
  5. Bhuvaneshwari, S., Robinson, R. and Gandhi, S. (2010), "Microfabric and mineralogical studies on the stabilization of an expansive soil using inorganic additives", Int. J. Geotech. Eng., 4(3), 395-405. https://doi.org/10.3328/IJGE.2010.04.03.395-405.
  6. Chai, W., Huang, Y., Han, G., Liu, J., Yang, S. and Cao, Y. (2017), "An enhanced study on adsorption of Al (iii) onto bentonite and kaolin: kinetics, isotherms, and mechanisms", Miner. Process Extr. Metall. Rev., 38(2), 106-115. https://doi.org/10.1080/08827508.2016.1262862.
  7. Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
  8. CJJ/T 286-2018 (2018), Technical Standard for Application of Soil Stabilizer, Ministry of housing and construction of the People's Republic of China.
  9. Fu, H., Liu, J., and Zha, H. (2020), "Study of the strength of disintegrated carbonaceous mudstone modified with nano-Al2O3 and cement", J. Nanosci. Nanotechno., 20(8), 4839-4845. https://doi.org/10.1166/jnn.2020.18486.
  10. Fu, J.T., Hu, X.S., Li, X.L., Yu, D.M., Liu, Y.B., Yang, Y.Q. and Li, S.X. (2019), "Influences of soil moisture and salt content on loess shear strength in the Xining Basin, northeastern QinghaiTibet Plateau", J. Mt. Sci., 16(5), 1184-1197. https://doi.org/10.1007/s11629-018-5206-9.
  11. Gao Q.F., Zeng L., Shi Z.N. and Zhang R. (2021), "Evolution of unsaturated shear strength and microstructure of a compacted silty clay on wetting paths", Int. J. Geomech., https://doi.org/10.1061/(ASCE)GM.1943-5622.0002207.
  12. Gao, L., Ren, Z. and Yu, X. (2015), "Experimental study of nanometer magnesium oxide-modified clay", Soil Mech. Found. Eng., 52(4), 218-224. https://doi.org/10.1007/s11204-015-9331-y.
  13. Gao, Q.F., Dong, H., Huang, R. and Li, Z.F. (2019), "Structural characteristics and hydraulic conductivity of an eluvial-colluvial gravelly soil", B. Eng. Geol. Environ., 78(7), 5011-5028. https://doi.org/10.1007/s10064-018-01455-1.
  14. Gao, Q.F., Shi, Z.N., Luo, J.T. and Liu, J. (2020), "Microstructural insight into permeability and water retention property of compacted binary silty clay", J. Cent. South Univ., 27(7),2068-2081. https://doi.org/10.1007/s11771-020-4431-x.
  15. Geckil, H., Xu, F., Zhang, X., Moon, S. and Demirci, U. (2010), "Engineering hydrogels as extracellular matrix mimics", Nanomedicine, 5(3), 469-484. https://doi.org/10.2217/nnm.10.12.
  16. Ghasabkolaei, N., Choobbasti, A.J., Roshan, N. and Ghasemi, S.E. (2017), "Geotechnical properties of the soils modified with nanomaterials: A comprehensive review", Arch. Civ. Mech. Eng., 17(3), 639-650. https://doi.org/10.1016/j.acme.2017.01.010.
  17. Gowda, R., Narendra, H., Nagabushan, B.M., Rangappa, D. and Prabhakara, R. (2017), "Investigation of nano-alumina on the effect of durability and micro-structural properties of the cement mortar", Mater. Today P., 4(11), 12191-12197. https://doi.org/10.1016/j.matpr.2017.09.149.
  18. Guo. L.L., Zheng, D., Xu, J.C., Gao, X., Fu, X.T. and Zhang, Q. (2016), "Effects of ionic crosslinking on physical and mechanical properties of alginate mulching films", Carbohydr. Polym., 136, 259-265. https://doi.org/10.1016/j.carbpol.2015.09.034.
  19. Hataf N, Ghadir P. and Ranjbar N. (2018), "Investigation of soil stabilization using chitosan biopolymer", J. Clean. Prod., 170, 1493-1500. https://doi.org/10.1016/j.jclepro.2017.09.256.
  20. Hecht, H. and Srebnik, S. (2016), "Structural characterization of sodium alginate and calcium alginate", Biomacromolecules, 17(6), 2160-2167. https://doi.org/10.1021/acs.biomac.6b00378.
  21. Hu, J., Zhang, L., Wei, H. and Du, J. (2018), "Experimental study of the compressive strength of chemically reinforced organicsandy soil", Geomech. Eng., 16(3), 247-255. https://doi.org/10.12989/gae.2018.16.3.247.
  22. Indraratna, B., Athukorala, R. and Vinod, J. (2012), "Estimating the rate of erosion of a silty sand treated with lignosulfonate", J. Geotech. Geoenviron. Eng., 139(5), 701-714. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000766.
  23. Jin, D., Guan, Z., Huo, L. and Wang, X. (2017), "Possible impacts of spring sea surface temperature anomalies over South Indian Ocean on summer rainfall in Guangdong-Guangxi region of China", Clim. Dynam., 49(9), 3075-3090. https://doi.org/10.1007/s00382-016-3494-8.
  24. Kumar S.A. and Sujatha E.R. (2021), "An appraisal of the hydromechanical behaviour of polysaccharides, xanthan gum, guar gum and β-glucan amended soil", Carbohyd. Polym., 265, 118083. https://doi.org/10.1016/j.carbpol.2021.118083.
  25. Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
  26. Li, J., He, J., Huang, Y., Li, D. and Chen, X. (2015), "Improving surface and mechanical properties of alginate films by using ethanol as a co-solvent during external gelation", Carbohyd. Polym., 123, 208-216. https://doi.org/10.1016/j.carbpol.2015.01.040.
  27. Liu, L., Qiao, J., Shen, B., Lu, X. and Yang, Y. (2017), "Geological characteristics and shale gas distribution of carboniferous mudstones in the Tarim Basin, China", Acta Geochim., 36(2) 260-275. https://doi.org/10.1007/s11631-017-0144-8.
  28. Liu, S., Li, Z., Li, Y. and Cao, W. (2018), "Strength properties of Bayer red mud stabilized by lime-fly ash using orthogonal experiments", Constr. Build. Mater., 166, 554-563. https://doi.org/10.1016/j.conbuildmat.2018.01.186.
  29. Liu, Z. (2015), "Influence of rainfall characteristics on the infiltration moisture field of highway subgrades", Road Mater. Pavement Des., 16(3) 635-652. https://doi.org/10.1080/14680629.2015.1021370.
  30. Luo, H.L., Hsiao, D.H., Lin, D.F. and Lin, C.K. (2012), "Cohesive soil stabilized using sewage sludge ash/cement and nanoAl2O3", Int. J. Transp. Sci. Technol., 1(1), 83-99. https://doi.org/10.1260/2046-0430.1.1.83.
  31. Luo, H.L., Lin, D.F., Shieh, S.I. and You, Y.F. (2015), "Microobservations of different types of nano-Al2O3 on the hydration of cement paste with sludge ash replacement", Environ. Technol., 36(23), 2967-2976. https://doi.org/10.1080/09593330.2014.911362.
  32. Mollins, L.H., Stewart, D.I. and Cousens, T.W. (1996), "Predicting the properties of bentonite-sand mixtures", Clay. Miner., 31(2), 243-252. https://doi.org/10.1180/claymin.1996.031.2.10.
  33. Mujah, D., Shahin, M.A. and Cheng, L. (2017), "State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization", Geomicrobiol. J., 34(6). 524-537. https://doi.org/10.1080/01490451.2016.1225866.
  34. Patel M.A. and Patel H. (2012), "Experimental study to correlate the test results of PBT, UCS, and CBR with DCP on various soils in soaked condition", Int. J. Eng., 6(5):244.
  35. Rezaeimalek, S., Huang, J. and Bin-Shafique, S. (2017), "Performance evaluation for polymer-stabilized soils", Transp. Res. Record., 2657(1), 58-66. https://doi.org/10.3141/2657-07.
  36. Sarika, P.R. and James, N.R. (2016), "Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery", Carbohydr. Polym., 148, 354-361. https://doi.org/10.1016/j.carbpol.2016.04.073.
  37. Tan, T.S., Goh, T.L. and Yong, K.Y. (2002), "Properties of Singapore marine clays improved by cement mixing", Geotech. Test. J., 25(4), 422-433. https://doi.org/10.1520/GTJ11295J.
  38. Taylor-Lange, S.C., Lamon, E.L., Riding, K.A. and Juenger, M.C. (2015), "Calcined kaolinite-bentonite clay blends as supplementary cementitious materials", Appl. Clay Sci., 108, 84-93. https://doi.org/10.1016/j.clay.2015.01.025.
  39. Vanapalli, S.K., Oh, W.T. and Puppala, A.J. (2007), "Determination of the bearing capacity of unsaturated soils under undrained loading conditions", Proceedings of the 60th Canadian Geotechnical Conference, Ottawa, Canada, October.
  40. Voottipruex, P. and Jamsawang, P. (2014), "Characteristics of expansive soils improved with cement and fly ash in Northern Thailand", Geomech. Eng., 6(5), 437-453. https://doi.org/10.12989/gae.2014.6.5.437.
  41. Wen, K., Li, Y., Huang, W., Armwood, C., Amini, F. and Li, L. (2019), "Mechanical behaviors of hydrogel-impregnated sand", Constr. Build. Mater., 207, 174-180. https://doi.org/10.1016/j.conbuildmat.2019.02.141.
  42. Xiao, Y., Stuedlein, A.W., Chen, Q., Liu, H. and Liu, P. (2017), "Stress-strain-strength response and ductility of gravels improved by polyurethane foam adhesive", J. Geotech. Geoenviron. Eng., 144(2), 04017108. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001812.
  43. Xiao, Z., Wang, Z., Huang, M., Luo, X., Liang, Y. and Lin, Z. (2020), "Urbanization in an underdeveloped city-Nanning, China and its impact on a heavy rainfall event in July". Earth Sp. Sci., 7(4), e2019EA000991. https://doi.org/10.1029/2019EA000991.
  44. Yu, Z. H., Liu, X. M., Xu, C.Y., Xiong, H.L. and Li, H. (2016), "Specific ion effects on soil water movement", Soil Till. Res., 161, 63-70. https://doi.org/10.1016/j.still.2016.03.004.
  45. Zeng, L., Bian, H.B., Shi, Z.N. and He Z.M. (2017), "Forming condition of transient saturated zone and its distribution in residual slope under rainfall conditions", J. Cent. South Univ., 24(8), 1866-1880. https://doi.org/10.1007/s11771-017-3594-6.
  46. Zeng, L., Luo, J.T., Liu, J., Gao, Q.F. and Bian, H.B. (2021a), "Disintegration characteristics and mechanisms of carbonaceous mudstone subjected to load and cyclic drying-wetting", J. Mater. Civ. Eng., 33(8), 04021195. https://doi.org/10.1061/(ASCE) MT.1943-5533.0003817.
  47. Zeng, L., Xiao, L.Y., Zhang, J.H. and Gao, Q.F. (2019), "Effect of the characteristics of surface cracks on the transient saturated zones in colluvial soil slopes during rainfall", B. Eng. Geol. Environ., 1-11. https://doi.org/10.1007/s10064-019-01584-1.
  48. Zeng, L., Yu, H. C., Liu, J., Gao, Q. F., and Bian, H. B. (2021b), "Mechanical behaviour of disintegrated carbonaceous mudstone under stress and cyclic drying/wetting", Constr. Build. Mater., 282, 122656. https://doi.org/10.1016/j.conbuildmat.2021.122656.
  49. Zhang, J.H., Gu, F. and Zhang, Y. (2019b), "Use of buildingrelated construction and demolition wastes in highway embankment: Laboratory and field evluations", J. Clean. Prod., 230, 1051-1060. https://doi.org/10.1016/j.jclepro.2019.05.182.
  50. Zhang, J.H., Peng, J.H. Zeng, L., Li J. and Li, F. (2019a), "Rapid estimation of resilient modulus of subgrade soils using performance-related soil properties", Int. J. Pavement. Eng., 1-8. https://doi.org/10.1080/10298436.2019.1643022.
  51. Zhang, M., Guo, H., El-Korchi, T., Zhang, G. and Tao, M. (2013), "Experimental feasibility study of geopolymer as the nextgeneration soil stabilizer", Constr. Build. Mater., 47, 1468-1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017.
  52. Zhang, T., Cai, G. and Liu, S. (2018), "Application of ligninstabilized silty soil in highway subgrade: A macroscale laboratory study", J. Mater. Civ. Eng., 30(4), 04018034. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002203.