DOI QR코드

DOI QR Code

Review on engineering properties of MICP-treated soils

  • Yu, Tong (Laboratoire de Mecanique des Sols, Structures et Materiaux, CNRS UMR 8579, Universite Paris Saclay) ;
  • Souli, Hanene (Laboratoire de Tribologie et Dynamique des Systemes, CNRS UMR 5513, Universite de Lyon) ;
  • Pechaud, Yoan (Laboratoire Geomateriaux et Environnement, Universite Gustave Eiffel) ;
  • Fleureau, Jean-Marie (Laboratoire de Mecanique des Sols, Structures et Materiaux, CNRS UMR 8579, Universite Paris Saclay)
  • 투고 : 2020.07.24
  • 심사 : 2021.09.28
  • 발행 : 2021.10.10

초록

Microbial induced calcium carbonate precipitation (MICP), a sustainable and effective soil improvement method, has experienced a burgeoning development in recent years. It is a bio-mediated method that uses the metabolic process of bacteria to cause CaCO3 precipitation in the pore space of the soil. This technique has a large potential in the geotechnical engineering field to enhance soil properties, including mitigation of liquefaction, control of suffusion, etc. Multi-scale studies, from microstructure investigations (microscopic imaging and related rising techniques at micron-scale), to macroscopic tests (lab-based physical, chemical and mechanical tests from centimeter to meter), to in-situ trials (kilometers), have been done to study the mechanisms and efficiency of MICP. In this article, results obtained in recent years from various testing methods (conventional tests including unconfined compression tests, triaxial and oedometric tests, centrifuge tests, shear wave velocity and permeability measurements, as well as microscopic imaging) were selected, presented, analyzed and summarized, in order to be used as reference for future studies. Though results obtained in various studies are rather scattered, owning to the different experimental conditions, general conclusions can be given: when the CaCO3 content (CCC) increases, the unconfined compression strength increases (up to 1.4 MPa for CCC=5%) as well as the shear wave velocity (more than 1-fold increase in Vs for each 1% CaCO3 precipitated), and the permeability decreases (with a drop limited to less than 3 orders of magnitude). Concerning the mechanical behavior of MICP treated soil, an increase in the peak properties, an indefinite increase in friction angle and a large increase in cohesion were obtained. When the soil was subjected to cyclic/dynamic loadings, lower pore pressure generation, reduced strains, and increasing number of cycles to reach liquefaction were concluded. It is important to note that the formation of CaCO3 results in an increase in the dry density of the samples, which adds to the bonding of particles and may play a major part in the improvement of the mechanical properties of soil, such as peak maximum deviator, resistance to liquefaction, etc.

키워드

과제정보

The authors would like to thank the financial support of China Scholarship Council (CSC) and the assistance of Soletanche-Bachy.

참고문헌

  1. Ahmadi, M.M. and Akbari Paydar, N. (2014), "Requirements for soil-specific correlation between shear wave velocity and liquefaction resistance of sands", Soil Dyn. Earthq. Eng., 57, 152-163. https://doi.org/10.1016/j.soildyn.2013.11.001.
  2. Al Qabany, A., Mortensen, B., Martinez, B., Soga, K. and Dejong, J. (2011), "Microbial carbonate precipitation: Correlation of Swave velocity with calcite precipitation", Proceedings of the Geo-Frontiers 2011, Dallas, Texas, U.S.A., March.
  3. Al Qabany, A. and Soga, K. (2013), "Effect of chemical treatment used in MICP on engineering properties of cemented soils", Geotechnique, 63, 331-339. https://doi.org/10.1680/geot.SIP13.P.022.
  4. Bahmani, M., Noorzad, A., Hamedi, J. and Sali, F. (2017), "The role of Bacillus pasteurii on the change of parameters of sands according to temperature compresion and wind erosion resistance", J. CleanWAS, 1, 1-5. https://doi.org/10.26480/jcleanwas.02.2017.01.05.
  5. Biarez, J. and Hicher, P.Y. (1994), Elementary Mechanics of Soil Behaviour: Saturated Remoulded Soils, A.A. Balkema, Lisse, The Netherlands.
  6. Cardoso, R., Pedreira, R., Duarte, S., Monteiro, G., Borges, H. and Flores-Colen, I. (2016), Biocementation as Rehabilitation Technique of Porous Materials, in New Approaches to Building Pathology and Durability, Springer, 99-120.
  7. Cardoso, R., Pires, I., Duarte, S.O.D and Monteiro, G.A. (2018), "Effects of clay's chemical interactions on biocementation", Appl. Clay Sci., 156, 96-103. https://doi.org/10.1016/j.clay.2018.01.035.
  8. Cheng, L. (2012), "Innovative ground enhancement by improved microbially induced CaCO3 precipitation technology", Ph.D. Dissertation; Murdoch University, Perth, Western Australia, Australia.
  9. Cheng, L., Cord-Ruwisch, R. and Shahin, M.A. (2013), "Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation", Can. Geotech. J., 50, 81-90. https://doi.org/10.1139/cgj-2012-0023.
  10. Cheng, L., Shahin, M.A. and Mujah, D. (2017), "Influence of key environmental conditions on microbially induced cementation for soil stabilization", J. Geotech. Geoenviron. Eng., 143(1), 04016083. https://doi.org/10.1061/(ASCE) GT.1943-5606.0001586.
  11. Choi, S.G., Wang, K., Wen, Z. and Chu, J. (2017), "Mortar crack repair using microbial induced calcite precipitation method", Cement Concrete Compos., 83, 209-221. https://doi.org/10.1016/j.cemconcomp.2017.07.013.
  12. Choi, S.G., Chu, J. and Kwon, T.H. (2019), "Effect of chemical concentrations on strength and crystal size of biocemented sand", Geomech. Eng., 17(5), 465-473. https://doi.org/10.12989/gae.2019.17.5.465.
  13. Choi, S.G., Chang, I., Lee, M., Lee, J.H., Han, J.T. and Kwon, T.H. (2020), "Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers", Constr. Build. Mater., 246, 118415. https://doi.org/10.1016/j.conbuildmat.2020.118415.
  14. Connolly, J., Kaufman, M., Rothman, A., Gupta, R., Redden, G., Schuster, M., Colwell, F. and Gerlach, R. (2013), "Construction of two ureolytic model organisms for the study of microbially induced calcium carbonate precipitation", J. Microbiol. Methods, 94, 290-299. https://doi.org/10.1016/j.mimet.2013.06.028.
  15. Cui, M.J., Zheng, J.J., Zhang, R.J., Lai, H.J. and Zhang, J. (2017), "Influence of cementation level on the strength behaviour of bio-cemented sand", Acta Geotech., 12(5), 971-986. https://doi.org/10.1007/s11440-017-0574-9.
  16. Cui, M.J., Zheng, Chu, J., Wu, C.C. and Lai, H.J. (2021), "Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand", Acta Geotech., 16(5), 1377-1389. https://doi.org/10.1007/s11440-020-01099-0.
  17. Dadda, A., Geindreau, C., Emeriault, F., Rolland du Roscoat, S., Garandet, A., Sapin, L. and Esnaut Filet, A. (2017), "Characterization of microstructural and physical properties changes in biocemented sand using 3D X-ray microtomography", Acta Geotech., 12(5), 955-970. https://doi.org/10.1007/s11440-017-0578-5.
  18. Darby, K.M., Hernandez, G.L., Dejong, J.T., Boulanger, R.W., Gomez, M.G. and Wilson, D.W. (2019), "Centrifuge Model testing of liquefaction mitigation via microbially induced calcite precipitation", J. Geotech. Geoenviron. Eng., 145, 1-13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002122.
  19. Decho, A.W. (2010), "Overview of biopolymer-induced mineralization: What goes on in biofilms?", Ecol. Eng., 36, 137-144. https://doi.org/10.1016/j.ecoleng.2009.01.003.
  20. Dejong, J.T., Fritzges, M.B. and Nusslein, K. (2006), "Microbially induced cementation to control sand response to undrained shear", J. Geotech. Geoenviron. Eng., 132, 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
  21. Dejong, J.T., Mortensen, B.M., Martinez, B.C. and Nelson, D.C. (2010), "Bio-mediated soil improvement", Ecol. Eng., 36, 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
  22. Dejong, J.T., Soga, K., Kavazanjian, E., Burns, S., Van Paassen, L.A., Al Qabany, A., Aydilek, A., Bang, S.S., Burbank, M., Caslake, L.F., Chen, C.Y., Cheng, X., Chu, J., Ciurli, S., Esnault-Filet, A., Fauriel, S., Hamdan, N., Hata, T., Inagaki, Y., Jefferis, S., Kuo, M., Laloui, L., Larrahondo, J., Manning, D.A.C., Martinez, B., Montoya, B.M., Nelson, D.C., Palomino, A., Renforth, P., Santamarina, J.C., Seagren, E.A., Tanyu, B., Tsesarsky, M. and Weaver, T. (2013), "Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges", Geotechnique, 63, 287-301. https://doi.org/10.1680/geot.SIP13.P.017.
  23. Dejong, J.T., Martinez, B.C., Ginn, T.R., Hunt, C., Major, D. and Tanyu, B. (2014), "Development of a scaled repeated five-spot treatment model for examining microbial induced calcite precipitation feasibility in field applications", Geotech. Test. J., 37(3), 424-435. https://doi.org/10.1520/GTJ20130089.
  24. Dhami, N.K., Reddy, M.S. and Mukherjee, A. (2013), "Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites", J. Microbiol. Biotechnol., 23, 707-714. https://doi.org/10.4014/jmb.1212.11087.
  25. Do, J., Montoya, B.M. and Gabr, M.A. (2019), "Debonding of microbially induced carbonate precipitation-stabilized sand by shearing and erosion", Geomech. Eng., 17(5), 429-438. https://doi.org/10.12989/GAE.2019.17.5.429.
  26. El-Latief, M.A.A., Ashour, M.B. and El-Tahrany, A.C. (2015). "Strengthening of the permeability of sandy soil by different grouting materials for seepage reduction", Global J. Res Eng. Civ. Struct. Eng., 15(3), 39-48.
  27. Ercole, C., Bozzelli, P., Altieri, F., Cacchio, P. and Del Gallo, M. (2012), "Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria", Microsc. Microanal., 18(4), 829-839. https://doi.org/10.1017/S1431927612000426.
  28. Eryuruk K., Yang S., Suzuki D., Sakaguchi, I. and Katayama, A. (2015), "Effects of bentonite and yeast extract as nutrient on decrease in hydraulic conductivity of porous media due to CaCO3 precipitation induced by Sporosarcina pasteurii", J. Biosci. Bioeng., 120, 411-418. https://doi.org/10.1016/j.jbiosc.2015.01.020.
  29. Esnault Filet, A., Gutjahr, I., Garandet, A., Viglino, A., Beguin, R., Sibourg, O., Monnier, J.M., Martins, J., Oxarango, L., Spadini, L., Geindreau, C., Emeriault, F. and Castanier Perthuisot, S. (2019), "BOREAL, Bio-reinforcement of embankments by biocalcification", Digues Maritimes et Fluviales de Protection Contre les Inondations, Aix-en-Provence, France (in French).
  30. Farah, T., Souli, H., Fleureau, J.M., Kermouche, G., Fry, J.J., Girard, B., Aelbrecht, D., Lambert, J. and Harkes, M. (2016), "Durability of bioclogging treatment of soils", J. Geotech. Geoenviron. Eng., 142(9), 04016040. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001503.
  31. Feng, K. and Montoya, B.M. (2016), "Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated Sands under monotonic drained loading", J. Geotech. Geoenviron. Eng., 142(1), 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
  32. Feng, K. and Montoya, B.M. (2017), "Quantifying level of microbial-induced cementation for cyclically loaded sand", J. Geotech. Geoenviron. Eng., 143(6), 06017005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682.
  33. Gao, Y., Hang, L., He, J. and Chu, J. (2019), "Mechanical behaviour of biocemented sands at various treatment levels and relative densities", Acta Geotech., 14, 697-707. https://doi.org/10.1007/s11440-018-0729-3.
  34. Gat, D., Tsesarsky, M., Shamir, D. and Ronen, Z. (2014), "Accelerated microbial-induced CaCO3 precipitation in a defined coculture of ureolytic and non-ureolytic bacteria", Biogeosciences, 11(10), 2561-2569. https://doi.org/10.5194/bg-11-2561-2014.
  35. Ghosh, T., Bhaduri, S., Montemagno, C. and Kumar, A. (2019), "Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface", PLoS One, 14, 1-15. https://doi.org/10.1371/journal.pone.0210339.
  36. Gomez, M.G. and Dejong, J.T. (2017), "Engineering properties of bio-cementation improved sandy soils", Proceedings of the Grouting 2017, Honolulu, Hawaii, U.S.A., July.
  37. Gomez, M.G., Dejong, J.T. and Anderson, C.M. (2018), "Effect of bio-cementation on geophysical and cone penetration measurements in sands", Can. Geotech. J., 55(11), 1632-1646. https://doi.org/10.1139/cgj-2017-0253.
  38. Gowthaman, S., Nakashima, K., and Kawasaki S. (2021), "Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation", Soils Found., 60(4), 840-855. https://doi.org/10.1016/j.sandf.2020.05.012.
  39. Haouzi, F., Esnault Filet, A. and Courcelles, B. (2019), "Performance studies of microbial induced calcite precipitation to prevent the erosion of internally unstable granular soils", Proceedings of the GeoChina 2018, Hangzhou, China, July.
  40. Hataf, N. and Jamali, R. (2018), "Effect of fine-grain percent on soil strength properties improved by biological method", Geomicrobiol. J., 35, 695-703. https://doi.org/10.1080/01490451.2018.1454554.
  41. Hussien, M.N. and Karray, M. (2016), "Shear wave velocity as a geotechnical parameter: An overview", Can. Geotech. J., 53(2), 252-272. https://doi.org/10.1139/cgj-2014-0524.
  42. Imran, M.A., Nakashima, K., Evelpidou, N. and Kawasaki, S. (2019), "Factors affecting the urease activity of native ureolytic bacteria isolated from coastal areas", Geomech. Eng., 17(5), 421-427. https://doi.org/10.12989/gae.2019.17.5.421.
  43. Ivanov, V. and Chu, J. (2008), "Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ", Rev. Environ. Sci. Biotechnol., 7, 139-153. https://doi.org/10.1007/s11157-007-9126-3.
  44. Ivanov, V. (2010), Environmental Microbiology for Engineers, CRC Press, Taylor and Francis Group, Boca Raton, Florida, U.S.A
  45. Jiang, N.J. and Soga, K. (2017), "The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures", Geotechnique, 67, 42-55. https://doi.org/10.1680/jgeot.15.p.182.
  46. Jiang, N.J., Soga, K. and Kuo, M. (2017), "Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures", J. Geotech. Geoenviron. Eng., 143(3), 04016100. https://doi.org/10.1061/(asce)gt.1943-5606.0001559.
  47. Kawaguchi, T. and Decho, A.W. (2002), "A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism", J. Cryst. Growth, 240, 230-235. https://doi.org/10.1016/S0022-0248(02)00918-1.
  48. Lee, M., Gomez, M.G., El Kortbawi, M., and Ziotopoulou, K. (2020), "Examining the liquefaction resistance of lightly cemented sands using microbially induced calcite precipitation (MICP)", Proceedings of the GeoCongress 2020, Minneapolis, Minnesota, U.S.A., February.
  49. Li, B. (2015), "Geotechnical properties of biocement treated sand and clay", Ph.D. Dissertation, Nanyang Technological University, Singapore.
  50. Li, C., Yao, D., Liu, S., Zhou, T., Bai, S., Gao, Y. and Li, L. (2018), "Improvement of geomechanical properties of bio-remediated aeolian sand.", Geomicrobiol. J., 35, 132-140. https://doi.org/10.1080/01490451.2017.1338798.
  51. Li, L., Wen, K., Li, C. and Amini, F. (2017), "FIB/SEM imaging of microbial induced calcite precipitation in sandy soil", Microsc. Microanal., 23, 310-311. https://doi.org/10.1017/S1431927617002239.
  52. Liang, S., Chen, J., Niu, J., Gong, X. and Feng, D. (2019), "Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation", Mar. Georesour. Geotec., 38(4), 393-399. https://doi.org/10.1080/1064119X.2019.1575939.
  53. Lin, H. (2016), "Microbial modification of soil for ground improvement", Ph.D. Dissertation, Lehigh University, Bethlehem, Pennsylvania, U.S.A.
  54. Lin, H., Suleiman, M.T., Brown, D.G. and Kavazanjian, E. (2016), "Mechanical behavior of sands treated by microbially induced carbonate precipitation", J. Geotech. Geoenviron. Eng., 142, 1-13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
  55. Lin, H., Suleiman, M.T. and Brown, D.G. (2021), "Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP)", Soils Found., 60(4), 944-961. https://doi.org/10.1016/j.sandf.2020.07.003.
  56. Mahawish, A., Bouazza, A. and Gates, W.P. (2018), "Effect of particle size distribution on the bio-cementation of coarse aggregates", Acta Geotech., 13, 1019-1025. https://doi.org/10.1007/s11440-017-0604-7.
  57. Martinez, B.C. and Dejong, J.T. (2009), "Bio-mediated soil improvement: Load transfer mechanisms at the micro- and macro- scales Brian", Proceedings of the Workshop on Ground Improvement Technologies, Orlando, Florida, U.S.A., March.
  58. Martinez, B.C., Dejong, J.T., Ginn, T.R., Montoya, B.M., Barkouki, T.H., Hunt, C., Tanyu, B. and Major, D. (2013), "Experimental optimization of microbial-induced carbonate precipitation for soil improvement", J. Geotech. Geoenviron. Eng., 139, 587-598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
  59. Marzin, T., Desvages, B., Creppy, A., Lepine, L., Esnault-Filet, A. and Auradou, H. (2020), "Using Microfluidic set-up to determine the adsorption rate of Sporosarcina pasteurii bacteria on sandstone", Transp. Porous Media, 132(2), 283-297. https://doi.org/10.1007/s11242-020-01391-3.
  60. Montoya, B.M., Dejong, J.T., Boulanger, R.W., Wilson, D.W., Gerhard, R., Ganchenko, A. and Chou, J.C. (2012), "Liquefaction mitigation using microbial induced calcite precipitation", Proceedings of the GeoCongress 2012, Oakland, California, U.S.A.
  61. Montoya, B.M., Dejong, J.T. and Boulanger, R.W. (2013), "Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation", Geotechnique, 63, 302-312. https://doi.org/10.1680/geot.SIP13.P.019.
  62. Montoya, B.M. and Dejong, J.T. (2015), "Stress-strain behavior of sands cemented by microbially induced calcite precipitation", J. Geotech. Geoenviron. Eng., 141(6), 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
  63. Mujah, D., Cheng, L. and Shahin, M.A. (2019), "Microstructural and geomechanical study on biocemented sand for optimization of MICP process", J. Mater. Civ. Eng., 31, 1-10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002660.
  64. Nehrke, G. and Nouet, J. (2011), "Confocal Raman microscope mapping as a tool to describe different mineral and organic phases at high spatial resolution within marine biogenic carbonates: Case study on Nerita undata (Gastropoda, Neritopsina)", Biogeosciences, 8(12), 3761-3769. https://doi.org/10.5194/bg-8-3761-2011.
  65. O'Donnell, S.T., Rittmann, B.E. and Kavazanjian, E. (2017), "MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. II: MICP", J. Geotech. Geoenviron. Eng., 143(12), 04017095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001806.
  66. Omoregie, A.I., Ngu, L.H., Ong, D.E.L. and Nissom, P.M. (2019), "Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application", Biocatal. Agric. Biotechnol., 17, 247-255. https://doi.org/10.1016/j.bcab.2018.11.030.
  67. Porcino, D., Marciano, V. and Granata, R. (2011), "Undrained cyclic response of a silicate-grouted sand for liquefaction mitigation purposes", Geomech. Geoeng., 6, 155-170. https://doi.org/10.1080/17486025.2011.560287.
  68. Riveros, G.A., and Sadrekarimi, A. (2020), "Liquefaction resistance of Fraser river sand improved by a microbially-induced cementation", Soil Dyn. Earthq. Eng., 131, 1-14. https://doi.org/10.1016/j.soildyn.2020.106034.
  69. Royne, A., Phua, Y.J., Le, S.B., Eikjeland, I.G., Josefsen, K.D., Markussen, S., Myhr, A., Throne-Holst, H., Sikorski, P. and Wentzel, A. (2019), "Towards a low CO2 emission building material employing bacterial metabolism (1/2): The bacterial system and prototype production", PLoS One, 14(4). https://doi.org/10.1371/journal.pone.0212990.
  70. Sarda, D., Choonia, H.S., Sarode, D.D. and Lele, S.S. (2009), "Biocalcification by Bacillus pasteurii urease: A novel application", J. Ind. Microbiol. Biotechnol., 36, 1111-1115. https://doi.org/10.1007/s10295-009-0581-4.
  71. Schultze-Lam, S., Harauz, G. and Beveridge, T.J. (1992), "Participation of a cyanobacterial S layer in fine-grain mineral formation", J. Bacteriol., 174, 7971-7981. https://doi.org/10.1128/jb.174.24.7971-7981.1992.
  72. Shahin, S., Montoya, B.M. and Gabr M.A. (2017), "Effect of microbial induced calcium carbonate precipitation on the performance of ponded coal ash", Association of State Dam Safety Officials, Inc., U.S.A.
  73. Simatupang, M. and Okamura, M. (2017), "Liquefaction resistance of sand remediated with carbonate precipitation at different degrees of saturation during curing", Soils Found., 57, 619-631. https://doi.org/10.1016/j.sandf.2017.04.003.
  74. Son, H.M., Kim, H.Y., Park, S.M. and Lee, H.K. (2018), "Ureolytic/Non-ureolytic bacteria co-cultured self-healing agent for cementitious materials crack repair", Materials. https://doi.org/10.3390/ma11050782.
  75. Song, C., Elsworth, D., Zhi, S. and Wang, C. (2019), "The influence of particle morphology on microbially induced CaCO3 clogging in granular media", Mar. Georesour. Geotec., 39(1), 74-81. https://doi.org/10.1080/1064119X.2019.1677828.
  76. Soon, N.W., Lee, L.M., Khun, T.C. and Ling, H.S. (2013), "Improvements in engineering properties of soils through microbial-induced calcite precipitation", KSCE J. Civ. Eng., 17, 718-728. https://doi.org/10.1007/s12205-013-0149-8.
  77. Soon, N.W., Lee, L.M., Khun, T.C. and Ling, H.S. (2014), "Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation", J. Geotech. Geoenviron. Eng., 140(5), 04014006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089.
  78. Stabnikov, V., Chu, J., Ivanov, V. and Li, Y. (2013), "Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand", World J. Microbiol. Biotechnol., 29, 1453-1460. http://doi.org/10.1007/s11274-013-1309-1.
  79. Stocks-Fischer, S., Galinat, J.K. and Bang, S.S. (1999), "Microbiological precipitation of CaCO3", Soil Biol. Biochem., 31, 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6.
  80. Taibi, S., Fleureau, J.-M., Hadiwardoyo, S. and Kheirbek-Saoud, S. (2008). "Small and large strain behaviour of an unsaturated compacted silt", Eur. J. Environ. Civ. Eng., 12(3), 203-228. https://doi.org/10.1080/19648189.2008.9693010
  81. Terzis, D. and Laloui, L. (2019), "Cell-free soil bio-cementation with strength, dilatancy and fabric characterization", Acta Geotech., 14, 639-656. https://doi.org/10.1007/s11440-019-00764-3.
  82. van Paassen L. (2009), "Biogrout: ground improvement by microbially induced carbonate precipitation", Ph.D. Dissertation, Delft University of Technology, The Netherlands.
  83. Waller, J.T. (2011), "Influence of bio-cementation on shearing behavior in sand using X-ray computed tomography", Ph.D. Dissertation, University of California, Davis, California, U.S.A.
  84. Wang, Y., Soga, K. and Jiang, N. (2017), "Microbial induced carbonate precipitation (MICP): the case for microscale perspective", Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Korea, December.
  85. Wang, Y., Soga, K., Dejong, J.T. and Kabla, A.J. (2019), "A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced carbonate precipitation (MICP)", Geotechnique, 69, 1086-1094. https://doi.org/10.1680/jgeot.18.p.031.
  86. Wang, Z., Zhang, N., Cai, G., Jin, Y., Ding, N. and Shen, D. (2017), "Review of ground improvement using microbial induced carbonate precipitation (MICP)", Mar. Georesour. Geotec., 35(8), 1135-1146. https://doi.org/10.1080/1064119X.2017.1297877.
  87. Weil, M.H., Dejong, J.T., Martinez, B.C. and Mortensen, B.M. (2012), "Seismic and resistivity measurements for real-time monitoring of microbially induced calcite precipitation in sand", Geotech. Test. J., 35(2), 330-341. https://doi.org/10.1520/GTJ103365.
  88. Wen, K., Li, Y., Liu, S., Bu, C. and Li, L. (2019), "Development of an improved immersing method to enhance microbial induced calcite precipitation treated sandy soil through multiple treatments in low cementation media concentration", Geotech. Geol. Eng., 37(2), 1015-1027. https://doi.org/10.1007/s10706-018-0669-6.
  89. Whiffin, V.S. (2004), "Microbial CaCO3 precipitation for the production of biocement", Ph.D. Dissertation, Murdoch University, Western Australia, Australia.
  90. Whiffin, V.S., van Paassen, L. and Harkes, M. (2007), "Microbial carbonate precipitation as a soil improvement technique", Geomicrobiol. J., 24, 417-423. https://doi.org/10.1080/01490450701436505.
  91. Wu, S. (2015), "Mitigation of liquefaction hazards using the combined biodesaturation and bioclogging method", Ph.D. Dissertation, Iowa State University, U.S.A.
  92. Wu, S., Li, B. and Chu, J. (2021), "Stress-dilatancy behavior of MICP-treated sand", Int. J. Geomech., 21(3), 04020264-1-12. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001923.
  93. Xiao, P., Liu, H., Xiao, Y., Stuedlein, A.W. and Evans, T.M. (2018), "Liquefaction resistance of bio-cemented calcareous sand", Soil Dyn. Earthq. Eng., 107, 9-19. https://doi.org/10.1016/j.soildyn.2018.01.008.
  94. Xiao, Y., Zhao, C., Sun Y., Wang, S., Wu, H., Chen, H. and Liu, H. (2020), "Compression behavior of MICP-treated sand with various gradations", Acta Geotech., 16(5), 1391-1400. https://doi.org/10.1007/s11440-020-01116-2.
  95. Yasuhara, H., Neupane, D., Hayashi, K. and Okamura, M. (2012), "Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation", Soils Found., 52, 539-549. https://doi.org/10.1016/j.sandf.2012.05.011.
  96. Yu, T., Souli, H., Pechaud, Y. and Fleureau, J.M. (2020), "Optimizing protocols for microbial induced calcite precipitation (MICP) for soil improvement-a review", Eur. J. Environ. Civ. Eng., 1-16. https://doi.org/10.1080/19648189.2020.1755370.
  97. Zhang, X., Chen, Y., Liu, H., Zhang, Z. and Ding, X. (2020), "Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests", Soil Dyn. Earthq. Eng., https://doi.org/10.1016/j.soildyn.2019.105959.