DOI QR코드

DOI QR Code

Compressive strength of flawed cylindrical specimens subjected to axial loading

  • Karimi, Javad (School of Mining Engineering, College of Engineering, University of Tehran) ;
  • Asadizadeh, Mostafa (Department of Mining Engineering, Hamedan University of Technology) ;
  • Hossaini, Mohammad Farouq (School of Minerals and Energy Resources Engineering, University of New South Wales) ;
  • Nowak, Samuel (Department of Mining and Nuclear Engineering, Missouri University of Science and Technology) ;
  • Sherizadeh, Taghi (Department of Mining and Nuclear Engineering, Missouri University of Science and Technology)
  • 투고 : 2019.04.16
  • 심사 : 2021.10.01
  • 발행 : 2021.10.10

초록

Discontinuities are known to have a significant impact on the engineering characteristics of the rock masses, governing their potential failure pattern, increasing their deformation, and reducing their strength. In particular, the impact of non-persistent joints on the strength and failure mechanism of rock mass needs to be investigated further. The impact of different flaw geometrical characteristics such as flaw inclination, flaw length, flaw aperture, and flaw filling on uniaxial compressive strength of specimens has not been investigated thoroughly. In this paper, a series of uniaxial compression tests were conducted on cylindrical specimens containing an open central flaw. The effect of different parameters such as flaw inclination, flaw length, flaw aperture, and filling on the uniaxial compressive strength of specimens have been investigated through laboratory experiments. Response Surface Methodology (RSM) is adopted to analyze the impact of flaw parameters on the compressive strength of the constructed samples. The results of the experiments show that flaw inclination and flaw length have a significant impact on the peak strength of the samples, meaning that strength increases by growing of flaw angle and decreases by increasing of flaw length. In addition, at a low flaw length, aperture affects the UCS significantly, while by increasing flaw length, its effect decreases dramatically, and strength drops at a flaw inclination of 45 degrees. Conversely, at a higher flaw length, by increasing flaw inclination, the UCS increases constantly. It also has been observed that changing the flaw aperture had no important effect on the peak strength.

키워드

참고문헌

  1. Asadizadeh, M. and Rezaei, M. (2019), "Surveying the mechanical response of non-persistent jointed slabs subjected to compressive axial loading utilising GEP approach", Int. J. Geotech. Eng. https://doi.org/10.1080/19386362.2019.1596610.
  2. Asadizadeh, M., Hossaini, M. F., Moosavi, M. and Mohammadi, S. (2016), "A laboratory study on mix design to properly resemble a jointed brittle rock", Int. J. Min. Geo-Eng., 50(2), 201-210. https://doi.org/10.22059/ijmge.2016.59830.
  3. Asadizadeh, M., Hossaini, M.F., Moosavi, M., Masoumi, H. and Ranjith, P.G. (2019a), "Mechanical characterisation of jointed rock-like material with non-persistent rough joints subjected to uniaxial compression", Eng. Geol., 260, 105224. https://doi.org/10.1016/J.ENGGEO.2019.105224.
  4. Asadizadeh, M., Masoumi, H., Roshan, H. and Hedayat, A. (2019b), "Coupling Taguchi and response surface methodologies for the efficient characterization of jointed rocks' mechanical properties", Rock Mech. Rock Eng., 52(11), 4807-4819. https://doi.org/10.1007/s00603-019-01853-1.
  5. Asadizadeh, M., Moosavi, M. and Hossaini, M.F. (2018a), "Investigation of mechanical behaviour of non-persistent jointed blocks under uniaxial compression", Geomech. Eng., 14(1), 29-42. https://doi.org/10.12989/gae.2018.14.1.029.
  6. Asadizadeh, M., Moosavi, M., Hossaini, M.F. and Masoumi, H. (2018b), "Shear strength and cracking process of non-persistent jointed rocks: An extensive experimental investigation", Rock Mech. Rock Eng., 51(2), 415-428. https://doi.org/10.1007/s00603-017-1328-6.
  7. ASTM-D7012-14 (2014) D7012-14 Standard test method for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures.
  8. Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012.
  9. Bieniawski, Z.T. and Hawkes, I. (1978), "Suggested methods for determining tensile strength of rock materials", Int. J. Rock Mech. Min. Sci., 15(3), 99-103. https://doi.org/10.1016/0148-9062(78)90003-7
  10. Bobet, A. (2000), "The initiation of secondary cracks in compression", Eng. Fract. Mech., 66(2), 187-219. https://doi.org/10.1016/S0013-7944(00)00009-6.
  11. Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.
  12. Brady, B.H.G. and Brown, E.T. (2008), Rock Mechanics for Underground Mining, Tunnelling and Underground Space Technology, Springer.
  13. Chen, X., Liao, Z. and Peng, X. (2012), "Deformability characteristics of jointed rock masses under uniaxial compression", Int. J. Min. Sci. Technol., 22(2), 213-221. https://doi.org/10.1016/j.ijmst.2011.08.012.
  14. Gemi, L., Koroglu, M.A. and Ashour, A. (2018), "Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipes", Compos. Struct., 187, 157-168. https://doi.org/10.1016/j.compstruct.2017.12.049.
  15. Han, G., Jing, H., Jiang, Y., Liu, R., Su, H. and Wu, J. (2018), "The effect of joint dip angle on the mechanical behavior of infilled jointed rock masses under uniaxial and biaxial compressions", Processes, 6(5), 49. https://doi.org/10.3390/pr6050049.
  16. Heidarzadeh, S., Saeidi, A. and Rouleau, A. (2018), "Assessing the effect of open stope geometry on rock mass brittle damage using a response surface methodology", Int. J. Rock Mech. Min. Sci., 106, 60-73. http://doi.org/10.1016/j.ijrmms.2018.03.015.
  17. Huang, C., Yang, W., Duan, K., Fang, L., Wang, L. and Bo, C. (2019), "Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression", Constr. Build. Mater., 220, 426-443. https://doi.org/10.1016/j.conbuildmat.2019.05.159.
  18. Huang, Y.H., Yang, S.Q., Tian, W.L., Zeng, W. and Yu, L.Y. (2016), "An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression", Acta Mechanica Sinica, 32(3), 442-455. https://doi.org/10.1007/s10409-015-0489-3.
  19. Kirmizakis, P., Tsamoutsoglou, C., Kayan, B. and Kalderis, D. (2014), "Subcritical water treatment of landfill leachate: Application of response surface methodology", J. Environ. Manage., 146, 9-15. https://doi.org/10.1016/j.jenvman.2014.04.037.
  20. Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
  21. Li, D., Masoumi, H., Saydam, S., Hagan, P.C. and Asadizadeh, M. (2018), "Parametric study of fully grouted cable bolts subjected to axial loading", Can. Geotech. J., 56(10), 1514-1525. https://doi.org/10.1139/cgj-2018-0470.
  22. Li, Y.P., Chen, L.Z. and Wang, Y.H. (2005), "Experimental research on pre-cracked marble under compression", Int. J. Solids Struct., 42(9-10), 2505-2516. https://doi.org/10.1016/j.ijsolstr.2004.09.033.
  23. Liu, Q., Xu, J., Liu, X., Jiang, J. and Liu, B. (2015), "The role of flaws on crack growth in rock-like material assessed by AE technique", Int. J. Fracture, 193(2), 99-115. https://doi.org/10.1007/s10704-015-0021-6.
  24. Miller, D.M. (1984), "Reducing transformation bias in curve fittin", Amer. Stat., 38(2), 124-126. https://doi.org/10.1080/00031305.1984.10483180.
  25. Montgomery, D.C. (2001), Design and Analysis of Experiments, John Wiley & Sons, New York, U.S.A., 64-65.
  26. Morgan, S.P., Johnson, C.A. and Einstein, H.H. (2013), "Cracking processes in Barre granite: Fracture process zones and crack coalescence", Int. J. Fracture, 180(2), 177-204. https://doi.org/10.1007/s10704-013-9810-y.
  27. Nemat-Nasser, S. and Horii, H. (1982), "Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst", J. Geophys. Res., 87(B8), 6805. https://doi.org/10.1029/JB087iB08p06805.
  28. Ozbek, O. (2021), "Axial and lateral buckling analysis of kevlar/epoxy fiber-reinforced composite laminates incorporating silica nanoparticles", Polym. Composites, 42(3), 1109-1122. https://doi.org/10.1002/pc.25886.
  29. Ozbek, O. and Bozkurt, O. Y. (2019), "Hoop tensile and compression behavior of glass-carbon intraply hybrid fiber reinforced filament wound composite pipes", Mater. Test., 61(8), 763-769. https://doi.org/10.3139/120.111395.
  30. Ozbek, O., Bozkurt, O.Y. and Erklig, A. (2019), "An experimental study on intraply fiber hybridization of filament wound composite pipes subjected to quasi-static compression loading", Polym. Test., 79, 106082. https://doi.org/10.1016/j.polymertesting.2019.106082.
  31. Ozbek, O., Dogan, N.F. and Bozkurt, O.Y. (2020), "An experimental investigation on lateral crushing response of glass/carbon intraply hybrid filament wound composite pipes", J. Brazil. Soc. Mech. Sci. Eng., 42(7), 1-13. https://doi.org/10.1007/s40430-020-02475-3.
  32. Ozkilic, Y. O., Yazman, S., Aksoylu, C., Arslan, M.H. and Gemi, L. (2021), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Constr. Build. Mater., 275, 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.
  33. Park, C. H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027.
  34. Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46(5), 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006.
  35. Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8.
  36. Sodeifian, G., Azizi, J. and Ghoreishi, S. M. (2014) 'Response surface optimization of Smyrnium cordifolium Boiss (SCB) oil extraction via supercritical carbon dioxide', The Journal of Supercritical Fluids, 95, pp. 1-7. https://doi.org/10.1016/j.supflu.2014.07.023
  37. Wong, L.N.Y. and Einstein, H.H. (2009), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min. Sci., 46(2), 239-249. https://doi.org/10.1016/j.ijrmms.2008.03.006.
  38. Wong, R.H. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3.
  39. Yang, S.Q. and Jing, H.W. (2011), "Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fracture, 168(2), 227-250. https://doi.org/10.1007/s10704-010-9576-4.
  40. Yang, S.Q., Dai, Y.H., Han, L.J. and Jin, Z.Q. (2009), "Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression", Eng. Fract. Mech., 76(12), 1833-1845. https://doi.org/10.1016/j.engfracmech.2009.04.005.
  41. Yang, S.Q., Jiang, Y.Z., Xu, W.Y. and Chen, X.Q. (2008), "Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression", Int. J. Solids Struct., 45(17), 4796-4819. https://doi.org/10.1016/j.ijsolstr.2008.04.023.
  42. Yang, W., Li, G., Ranjith, P.G. and Fang, L. (2019), "An experimental study of mechanical behavior of brittle rock-like specimens with multi-non-persistent joints under uniaxial compression and damage analysis", Int. J. Damage Mech., 28(10), 1490-1522. https://doi.org/10.1177/1056789519832651.
  43. Yin, Q., Jing, H. and Su, H. (2018), "Investigation on mechanical behavior and crack coalescence of sandstone specimens containing fissure-hole combined flaws under uniaxial compression", Geosci. J., 1-18.
  44. Yuan, Z., Yang, J., Zhang, Y. and Zhang, X. (2015), "The optimization of air-breathing micro direct methanol fuel cell using response surface method", Energy, 80, 340-349. https://doi.org/10.1016/j.energy.2014.11.076.