DOI QR코드

DOI QR Code

Metal-organic framework films functionalized with nonionic conjugated polythiophenes for visual detection of PAHs

  • Tawfik, Salah M. (Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI) Nasr City) ;
  • Lee, Yong-Ill (Department of Materials Convergence and System Engineering, Changwon National University)
  • Received : 2021.07.12
  • Accepted : 2021.10.06
  • Published : 2021.11.25

Abstract

Natural and anthropogenic activities lead to the generation of polycyclic aromatic hydrocarbons (PAHs), persistent contaminants that adversely affect the environment and public health. However, highly sensitive, fast, and portable techniques for the detection of PAHs remain a technological challenge. The rapid analysis of urinary levels of 1-hydroxypyrene (1-HP) would enable PAH carcinogens to be measured using biomonitoring techniques. Here, we demonstrate biocompatible, easy-to-use, and portable sensors based on novel π-conjugated metal-organic frameworks (MOFs) for the detection of 1-HP. These sensors were developed by incorporating nonionic conjugated polythiophenes with a PLQY as high as 65% into lanthanide-MOFs (CP1-Eu-MOF and CP2-Eu-MOF) using an in-situ synthesis strategy. The emission of the sensors can be effectively quenched by 1-HP via hydrophobic, π-π stacking, and hydrogen bonding interactions. Significantly, the unique structure of CP2-Eu-MOF sensor displays superior performance with enhanced sensitivity (LOD ~1.02 pM) that is 1.63 times higher than that of CP1-Eu-MOF (LOD ~1.66 pM). More importantly, we successfully demonstrated the possibility of employing wax-printed paper in combination with a fast and cost-effective smartphone for rapid 1-HP detection. Moreover, portable sensory films were fabricated by incorporating CP2-Eu-MOF into a poly(vinylidene difluoride) (PVDF) matrix to produce CP2-Eu-MOF/PVDF films for the visual detection of 1-HP levels as low as 25 pM. Finally, the feasibility of successfully analyzing the levels of 1-HP in urine was verified by testing real urine samples with satisfactory recoveries of 94.1-103.5%. This method provides new pathways for the biomonitoring of polyaromatic environmental pollutants.

Keywords

Acknowledgement

S. M. Tawfik gratefully acknowledges support from the Egyptian Petroleum Research Institute.

References

  1. Abdel-Shafy, H.I. and Mansour, M.S.M. (2016), "A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation", Egyptian J. Petrol., 25(1), 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011.
  2. Alekseenko, A.N., Zhurba, O.M., Merinov, A.V. and Shayakhmetov, S.F. (2020), "Determination of 1-hydroxypyrene as a biomarker for the effects of polycyclic aromatic hydrocarbons in urine by chromatography-mass spectrometry", J. Anal. Chem., 75(1), 84-89. https://doi.org/10.1134/S1061934820010025.
  3. Ankamwar, B. and Sur, U.K.J. (2020), "Copper micro/nanostructures as effective SERS active substrates for pathogen detection", Adv. Nano Res., 9(2), 113-122. http://doi.org/10.12989/anr.2020.9.2.113.
  4. Bansal, V. and Kim, K.H.J.E.I. (2015), "Review of PAH contamination in food products and their health hazards", Environ. Int., 84, 26-38. https://doi.org/10.1016/j.envint.2015.06.016.
  5. Castro-Grijalba, A., Montes-Garcia, V., Cordero-Ferradas, M.J., Coronado, E., Perez-Juste, J. and Pastoriza-Santos, I. (2020), "SERS-based molecularly imprinted plasmonic sensor for highly sensitive PAH detection", ACS Sensors, 5(3), 693-702. https://doi.org/10.1021/acssensors.9b01882.
  6. Chen, L., Ye, J.W., Wang, H.P., Pan, M., Yin, S.Y., Wei, Z.W., Zhang, L.Y., Wu, K., Fan, Y.N. and Su, C.Y.J.N.C. (2017), "Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence", Nat. Commun., 8(1), 15985. https://doi.org/10.1038/ncomms15985.
  7. Cui, Y., Song, R., Yu, J., Liu, M., Wang, Z., Wu, C., Yang, Y., Wang, Z., Chen, B. and Qian, G.J.A.M. (2015), "Dual-emitting MOF⊃ dye composite for ratiometric temperature sensing", Adv. Mater., 27(8), 1420-1425. https://doi.org/10.1002/adma.201404700.
  8. Gao, P., da Silva, E.B., Townsend, T., Liu, X. and Ma, L.Q. (2019), "Emerging PAHs in urban soils: Concentrations, bioaccessibility, and spatial distribution", Sci. Total Environ. 670, 800-805. https://doi.org/10.1016/j.scitotenv.2019.03.247.
  9. Gill, B., Jobst, K. and Britz-McKibbin, P. (2020), "Rapid screening of urinary 1-hydroxypyrene glucuronide by multisegment injection-capillary electrophoresis-tandem mass spectrometry: A high-throughput method for biomonitoring of recent smoke exposures", Anal. Chem., 92(19), 13558-13564. http://doi.org/10.1021/acs.analchem.0c03212
  10. Lee, S.H., Tawfik, S.M., Thangadurai, D.T. and Lee, Y.I. (2021), "Highly sensitive and selective detection of Alprenolol using upconversion nanoparticles functionalized with amphiphilic conjugated polythiophene", Microchem. J., 164, 106010. https://doi.org/10.1016/j.microc.2021.106010.
  11. Habibullah-Al-Mamun, M., Ahmed, M.K. and Masunaga, S.J.A.i.e.r. (2018), "Polycyclic aromatic hydrocarbons (PAHs) in surface water from the coastal area of Bangladesh", Adv. Environ. Res., 7(3), 177-200. http://doi.org/10.12989/aer.2019.7.3.177.
  12. Haldar, R., Heinke, L. and Woll, C. (2020), "Advanced photoresponsive materials using the metal-organic framework approach", Adv. Mater., 32(20), 1905227. http://doi.org/10.1002/adma.201905227.
  13. Hao, J.N. and Yan, B. (2017), "Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanide-functionalized metal-organic framework sensor", Adv. Funct. Mater., 27(6), 1603856. http://doi.org/10.1002/adfm.201603856.
  14. He, X.M., Zhu, G.T., Yin, J., Zhao, Q., Yuan, B.F. and Feng, Y.Q.J.J.O.C.A. (2014), "Electrospun polystyrene/oxidized carbon nanotubes film as both sorbent for thin film microextraction and matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry", J. Chromatogr. A, 1351, 29-36. https://doi.org/10.1016/j.chroma.2014.05.045
  15. Hu, Z., Deibert, B.J. and Li, J.J.C.S.R. (2014), "Luminescent metal-organic frameworks for chemical sensing and explosive detection", Chem. Soc. Rev. 43(16), 5815-5840. https://doi.org/10.1039/C4CS00010B.
  16. Hu, Y., Du, C., Li, Y., Fan, L. and Li, X. (2015), "A gold nanoparticle-based colorimetric probe for rapid detection of 1-hydroxypyrene in urine", Analyst, 140(13), 4662-4667. http://doi.org/10.1039/C5AN00722D.
  17. Huang, R.W., Wei, Y.S., Dong, X.Y., Wu, X.H., Du, C.X., Zang, S.Q. and Mak, T.C.W. (2017), "Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework", Nat. Chem., 9(7), 689-697. https://doi.org/10.1038/nchem.2718.
  18. Jin, R., Bu, D., Liu, G., Zheng, M., Lammel, G., Fu, J., Yang, L., Li, C., Habib, A., Yang, Y. and Liu, X. (2020), "New classes of organic pollutants in the remote continental environment - Chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau", Environ. Int., 137, 105574. https://doi.org/10.1016/j.envint.2020.105574.
  19. Jongeneelen, F.J. (2014), "A guidance value of 1-hydroxypyrene in urine in view of acceptable occupational exposure to polycyclic aromatic hydrocarbons", Toxicol. Lett., 231(2), 239-248. https://doi.org/10.1016/j.toxlet.2014.05.001.
  20. Kim, K.H., Jahan, S.A., Kabir, E. and Brown, R.J.J.E.I. (2013), "A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects", Environ. Int., 60, 71-80. https://doi.org/10.1016/j.envint.2013.07.019.
  21. Kumar, V., George, P., Singh, R.K., Chowdhury, P.J.M. and Treatment, W. (2021), "Enhanced transport of Lignosulfonate by integrating adsorption sweep in a liquid membrane module", Membr. Water Treat., 12(3), 95-106. https://doi.org/10.12989/mwt.2021.12.3.095.
  22. Li, D., Cao, X., Zhang, Q., Ren, X., Jiang, L., Li, D., Deng, W. and Liu, H. (2019a), "Facile in situ synthesis of core-shell MOF@Ag nanoparticle composites on screen-printed electrodes for ultrasensitive SERS detection of polycyclic aromatic hydrocarbons", J. Mater. Chem. A., 7(23), 14108-14117. https://doi.org/10.1039/C9TA03690C.
  23. Li, H., Han, W., Lv, R., Zhai, A., Li, X.L., Gu, W. and Liu, X. (2019b), "Dual-function mixed-lanthanide metal-organic framework for ratiometric water detection in bioethanol and temperature sensing", Anal. Chem., 91(3), 2148-2154. https://doi.org/10.1021/acs.analchem.8b04690.
  24. Li, J., Yuan, S., Qin, J.-S., Pang, J., Zhang, P., Zhang, Y., Huang, Y., Drake, H.F., Liu, W.R. and Zhou, H.C. (2020a), "Stepwise assembly of turn-on fluorescence sensors in multicomponent metal-organic frameworks for in vitro cyanide detection", Angew. Chem. Int. Edit., 59(24), 9319-9323. https://doi.org/10.1002/anie.202000702.
  25. Li, C., Zeng, C., Chen, Z., Jiang, Y., Yao, H., Yang, Y. and Wong, W.T. (2020b), "Luminescent lanthanide metal-organic framework test strip for immediate detection of tetracycline antibiotics in water", J. Hazard. Mater., 384, 121498. https://doi.org/10.1016/j.jhazmat.2019.121498
  26. Li, Y., Li, Y., Wang, Y., Ma, G., Liu, X., Li, Y. and Soar, J. (2020c), "Application of zeolitic imidazolate frameworks (ZIF-8)/ionic liquid composites modified nano-carbon paste electrode as sensor for electroanalytical sensing of 1-hydroxypyrene", Microchem. J., 159, 105433. https://doi.org/10.1016/j.microc.2020.105433.
  27. Li, Z., Cao, Y., Qin, H., Ma, Y., Pan, L. and Sun, J. (2022), "Integration of chemical and biological methods: A case study of polycyclic aromatic hydrocarbons pollution monitoring in Shandong Peninsula, China", J. Environ. Sci., 111, 24-37. https://doi.org/10.1016/j.jes.2021.02.025.
  28. Liang, Q., Jiao, X., Yan, Y., Xie, Z., Lu, G., Liu, J. and Han, Y.J.A.F.M. (2019), "Separating crystallization process of P3HT and O-IDTBR to construct highly crystalline interpenetrating network with optimized vertical phase separation", Adv. Funct. Mater. 29(47), 1807591. https://doi.org/10.1002/adfm.201807591.
  29. Liang, Z., Li, M., Wang, Q., Qin, Y., Stuard, S.J., Peng, Z., Deng, Y., Ade, H., Ye, L. and Geng, Y. (2020), "Optimization requirements of efficient polythiophene: Nonfullerene organic solar cells", Joule, 4(6), 1278-1295. https://doi.org/10.1016/j.joule.2020.04.014.
  30. Lin, R.B., Liu, S.Y., Ye, J.W., Li, X.Y. and Zhang, J.P.J.A.S. (2016), "Photoluminescent metal-organic frameworks for gas sensing", Adv. Sci., 3(7), 1500434. https://doi.org/10.1002/advs.201500434.
  31. Lin, Y., Gao, X., Qiu, X., Liu, J., Tseng, C.-H., Zhang, J.J., Araujo, J.A. and Zhu, Y. (2021), "Urinary carboxylic acid metabolites as possible novel biomarkers of exposures to alkylated polycyclic aromatic hydrocarbons", Environ. Int., 147, 106325. https://doi.org/10.1016/j.envint.2020.106325
  32. Liu, C.Y., Chen, X.R., Chen, H.X., Niu, Z., Hirao, H., Braunstein, P. and Lang, J.P. (2020), "Ultrafast luminescent light-up guest detection based on the lock of the host molecular vibration", J. Am. Chem. Soc., 142(14), 6690-6697. https://doi.org/10.1021/jacs.0c00368.
  33. Liu, Y., Xian, K., Peng, Z., Gao, M., Shi, Y., Deng, Y., Geng, Y. and Ye, L. (2021), "Tuning the molar mass of P3HT via direct arylation polycondensation yields optimal interaction and high efficiency in nonfullerene organic solar cells", J. Mater. Chem. A, 9(35), 19874-19885. https://doi.org/10.1039/D1TA02253A.
  34. Luo, T.Y., Das, P., White, D.L., Liu, C., Star, A. and Rosi, N.L. (2020), "Turn-On" detection of gossypol using Ln3+-based metal-organic frameworks and Ln3+ salts", J. Am. Chem. Soc., 142(6), 2897-2904. https://doi.org/10.1021/jacs.9b11429.
  35. Ma, J., Li, S., Wu, G., Wang, S., Guo, X., Wang, L., Wang, X., Li, J. and Chen, L. (2019), "v (vinylidene fluoride) for use in determination of sulfonylurea herbicides in aqueous environments by high performance liquid chromatography", J. Colloid Interf. Sci., 553, 834-844. https://doi.org/10.1016/j.jcis.2019.06.082.
  36. Mallick, A., El-Zohry, A.M., Shekhah, O., Yin, J., Jia, J., Aggarwal, H., Emwas, A.H., Mohammed, O.F. and Eddaoudi, M. (2019), "Unprecedented ultralow detection limit of amines using a thiadiazole-functionalized Zr (IV)-based metal-organic framework", J. Am. Chem. Soc., 141(18), 7245-7249. https://doi.org/10.1021/jacs.9b01839
  37. Mattarozzi, M., Musci, M., Careri, M., Mangia, A., Fustinoni, S., Campo, L. and Bianchi, F.J.J.O.C.A. (2009), "A novel headspace solid-phase microextraction method using in situ derivatization and a diethoxydiphenylsilane fibre for the gas chromatography-mass spectrometry determination of urinary hydroxy polycyclic aromatic hydrocarbons", J. Chromatogr. A, 1216(30), 5634-5639. https://doi.org/10.1016/j.chroma.2009.05.072.
  38. Oliveira, M., Slezakova, K., Delerue-Matos, C., Pereira, M.C. and Morais, S. (2019), "Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts", Environ. Int., 124, 180-204. https://doi.org/10.1016/j.envint.2018.12.052
  39. Omidi, F., Khadem, M., Dehghani, F., Seyedsomeah, M. and Shahtaheri, S.J. (2020), "Ultrasound-assisted dispersive microsolid-phase extraction based on N-doped mesoporous carbon and high-performance liquid chromatographic determination of 1-hydroxypyrene in urine samples", J. Sep. Sci., 43(13), 2602-2609. https://doi.org/10.1002/jssc.202000172.
  40. Ou, Q., Tawfik, S.M., Zhang, X. and Lee, Y.I. (2020), "Novel "turn on-off" paper sensor based on nonionic conjugated polythiophene-coated CdTe QDs for efficient visual detection of cholinesterase activity", Analyst, 145(12), 4305-4313. https://doi.org/10.1039/D0AN00924E
  41. Pang, Y., Huang, Y., Li, W., Feng, L. and Shen, X. (2019a), "Conjugated polyelectrolyte/graphene multilayer films for simultaneous electrochemical sensing of three monohydroxylated polycyclic aromatic hydrocarbons", ACS Appl. Nano Mater., 2(12), 7785-7794. https://doi.org/10.1021/acsanm.9b01821.
  42. Pang, Y., Zhang, Y., Sun, X., Ding, H., Ma, T. and Shen, X. (2019b), "Synergistical accumulation for electrochemical sensing of 1-hydroxypyrene on electroreduced graphene oxide electrode", Talanta, 192, 387-394. https://doi.org/10.1016/j.talanta.2018.08.042.
  43. Pang, Y.H., Huang, Y.Y., Li, W.Y., Yang, N.C. and Shen, X.F. (2020a), "Electrochemical detection of three monohydroxylated polycyclic aromatic hydrocarbons using electroreduced graphene oxide modified screen-printed electrode", Electroanalysis, 32(7), 1459-1467. https://doi.org/10.1002/elan.201900692.
  44. Pang, Y., Yang, N., Shen, X., Zhang, Y. and Feng, L. (2020b), "Conjugated polymer self-assembled with graphene: Synthesis and electrochemical 1-hydroxypyrene sensor", Polymer, 188, 122139. https://doi.org/10.1016/j.polymer.2019.122139.
  45. Phan-Quang, G.C., Yang, N., Lee, H.K., Sim, H.Y.F., Koh, C.S.L., Kao, Y.C., Wong, Z.C., Tan, E.K.M., Miao, Y.E., Fan, W., Liu, T., Phang, I.Y. and Ling, X.Y. (2019), "Tracking airborne molecules from Afar: Three-dimensional metal-organic framework-surface-enhanced Raman scattering platform for stand-off and real-time atmospheric monitoring", ACS Nano, 13(10), 12090-12099. https://doi.org/10.1021/acsnano.9b06486.
  46. Phaomei, G. and Yaiphaba, N.J.A.I.N.R. (2015), "Ce3+ sensitize RE3+ (RE= Dy, Tb, Eu, Sm) doped LaPO4 nanophosphor with white emission tunability", Adv. Nano Res., 3(2), 55-66. http://doi.org/10.12989/anr.2015.3.2.055.
  47. Pruneda-A lvarez, L.G., Perez-Vazquez, F.J., Ruiz-Vera, T., Ochoa-Martinez, A .C., Orta-Garcia, S.T., Jimenez-Avalos, J.A., Perez-Maldonado, I.N.J.E.S. and Research, P. (2016), "Urinary 1-hydroxypyrene concentration as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) in Mexican women from different hot spot scenarios and health risk assessment", Environ. Sci. Pollut. Res. Int., 23(7), 6816-6825. https://doi.org/10.1007/s11356-015-5918-
  48. Nsibande, S.A. and Forbes, P.B.C. (2020), "Development of a turn-on graphene quantum dot-based fluorescent probe for sensing of pyrene in water", RSC Adv., 10(21), 12119-12128. https://doi.org/10.1039/C9RA10153E.
  49. Sava Gallis, D.F., Vogel, D.J., Vincent, G.A., Rimsza, J.M. and Nenoff, T.M. (2019), "NOx Adsorption and Optical Detection in Rare Earth Metal-Organic Frameworks", ACS Appl. Mater. Interf., 11(46), 43270-43277. https://doi.org/10.1021/acsami.9b16470
  50. Serrano, M., Bartolome, M., Gallego-Pico, A., Garcinuno, R., Bravo, J. and Fernandez, P.J.T. (2015), "Synthesis of a molecularly imprinted polymer for the isolation of 1-hydroxypyrene in human urine", Talanta, 143 71-76. https://doi.org/10.1016/j.talanta.2015.04.092.
  51. Serrano, M., Bartolome, M., Bravo, J.C., Paniagua, G., Ganan, J., Gallego-Pico, A. and Garcinuno, R.M.J.T. (2017), "On-line flow injection molecularly imprinted solid phase extraction for the preconcentration and determination of 1-hydroxypyrene in urine samples", Talanta, 166 375-382. https://doi.org/10.1016/j.talanta.2016.01.048.
  52. Shen, X., Cui, Y., Pang, Y. and Qian, H. (2012a), "Preconcentration and in situ electrochemical sensing of 1-hydroxypyrene on an electrodeposited poly(3-methylthiophene) film modified electrode", J. Electroanal. Chem., 667, 1-6. https://doi.org/10.1016/j.jelechem.2011.12.016.
  53. Shen, X., Cui, Y., Pang, Y. and Qian, H.J.E.A. (2012b), "Graphene oxide nanoribbon and polyhedral oligomeric silsesquioxane assembled composite frameworks for pre-concentrating and electrochemical sensing of 1-hydroxypyrene", Electrochim. Acta, 59, 91-99. https://doi.org/10.1016/j.electacta.2011.10.037.
  54. Shim, J., Tawfik, S.M., Thangadurai, D.T. and Lee, Y.-I. (2021), "Amphiphilic conjugated polythiophene-based fluorescence "Turn on" sensor for selective detection of Escherichia coli in water and milk", Bull. Korean Chem. Soc., 42(7), 1047-1053. https://doi.org/10.1002/bkcs.12333.
  55. Song, X.Z., Song, S.Y., Zhao, S.N., Hao, Z.M., Zhu, M., Meng, X., Wu, L.L. and Zhang, H.J.J.A.F.M. (2014), "Single-Crystal-to-Single-Crystal transformation of a europium (III) metal-organic framework producing a multi-responsive luminescent sensor", Adv. Funct. Mater., 24(26), 4034-4041. https://doi.org/10.1002/adfm.201303986.
  56. Soury, S., Bahrami, A., Alizadeh, S., Ghorbani Shahna, F. and Nematollahi, D. (2019), "Development of a needle trap device packed with zinc based metal-organic framework sorbent for the sampling and analysis of polycyclic aromatic hydrocarbons in the air", Microchem. J., 148, 346-354. https://doi.org/10.1016/j.microc.2019.05.019.
  57. Sun, C.Z., Zhang, L.Y., Wang, J.Y., Chen, Z.N. and Dai, F.R. (2018), "Sensitive and selective urinary 1-hydroxypyrene detection by dinuclear terbium-sulfonylcalixarene complex", Dalton Transact., 47(25), 8301-8306. https://doi.org/10.1039/C8DT01604F.
  58. Sur, U.K.J.A.i.n.r. (2013), "Surface-enhanced Raman scattering (SERS) spectroscopy: a versatile spectroscopic and analytical technique used in nanoscience and nanotechnology", Adv. Nano Res., 1(2), 111-124. https://doi.org/10.12989/anr.2013.1.2.111.
  59. Tawfik, S.M., Huy, B.T., Sharipov, M., Abd-Elaal, A. and Lee, Y.-I. (2018a), "Enhanced fluorescence of CdTe quantum dots capped with a novel nonionic alginate for selective optosensing of ibuprofen", Sensor Actuat. B Chem., 256, 243-250. https://doi.org/10.1016/j.snb.2017.10.092.
  60. Tawfik, S.M., Shim, J., Biechele-Speziale, D., Sharipov, M. and Lee, Y.I. (2018b), "Novel "turn off-on" sensors for highly selective and sensitive detection of spermine based on heparin-quenching of fluorescence CdTe quantum dots-coated amphiphilic thiophene copolymers", Sensors Actuat. B Chem., 257, 734-744. https://doi.org/10.1016/j.snb.2017.10.172.
  61. Tawfik, S.M., Sharipov, M., Kakhkhorov, S., Elmasry, M.R. and Lee, Y.I. (2019), "Multiple emitting amphiphilic conjugated polythiophenes-coated CdTe QDs for picogram detection of trinitrophenol explosive and application using chitosan film and paper-based sensor coupled with smartphone", Adv. Sci., 6(2), 1801467. https://doi.org/10.1002/advs.201801467.
  62. Tawfik, S.M., Elmasry, M.R., Sharipov, M., Azizov, S., Lee, C.H. and Lee, Y.I. (2020), "Dual emission nonionic molecular imprinting conjugated polythiophenes-based paper devices and their nanofibers for point-of-care biomarkers detection", Biosens. Bioelectron., 160, 112211. https://doi.org/10.1016/j.bios.2020.112211.
  63. Tropp, J., Ihde, M.H., Williams, A.K., White, N.J., Eedugurala, N., Bell, N.C., Azoulay, J.D. and Bonizzoni, M. (2019), "A sensor array for the discrimination of polycyclic aromatic hydrocarbons using conjugated polymers and the inner filter effect", Chem. Sci., 10(44), 10247-10255. https://doi.org/10.1039/C9SC03405F.
  64. Wang, Y., Wong, L.Y., Meng, L., Pittman, E.N., Trinidad, D.A., Hubbard, K.L., Etheredge, A., Del Valle-Pinero, A.Y., Zamoiski, R., van Bemmel, D.M., Borek, N., Patel, V., Kimmel, H.L., Conway, K.P., Lawrence, C., Edwards, K.C., Hyland, A., Goniewicz, M.L., Hatsukami, D., Hecht, S.S. and Calafat, A.M. (2019), "Urinary concentrations of monohydroxylated polycyclic aromatic hydrocarbons in adults from the U.S. Population Assessment of Tobacco and Health (PATH) Study Wave 1 (2013-2014)", Environ. Int., 123, 201-208. https://doi.org/10.1016/j.envint.2018.11.068.
  65. Wang, Q., Qin, Y., Li, M., Ye, L. and Geng, Y. (2020), "Molecular engineering and morphology control of polythiophene: Nonfullerene acceptor blends for high-performance solar cells", Adv. Energy Mater., 10(45), 2002572. https://doi.org/10.1002/aenm.202002572.
  66. Wang, Q., Li, M., Peng, Z., Kirby, N., Deng, Y., Ye, L. and Geng, Y. (2021), "Calculation aided miscibility manipulation enables highly efficient polythiophene:nonfullerene photovoltaic cells", Sci. China Chem., 64(3), 478-487. https://doi.org/10.1007/s11426-020-9890-6.
  67. Wu, G., Ma, J., Wang, S., Chai, H., Guo, L., Li, J., Ostovan, A., Guan, Y. and Chen, L. (2020), "Cationic metal-organic framework based mixed-matrix membrane for extraction of phenoxy carboxylic acid (PCA) herbicides from water samples followed by UHPLC-MS/MS determination", J. Hazard. Mater., 394, 122556. https://doi.org/10.1016/j.jhazmat.2020.122556.
  68. Wu, S., Min, H., Shi, W. and Cheng, P. (2020), "Multicenter metal-organic framework-based ratiometric fluorescent sensors", Adv. Mater. 32(3), 1805871. https://doi.org/10.1002/adma.201805871.
  69. Xu, X.Y., Lian, X., Hao, J.N., Zhang, C. and Yan, B.J.A.M. (2017a), "A double-stimuli-responsive fluorescent center for monitoring of food spoilage based on dye covalently modified EuMOFs: From sensory hydrogels to logic devices", Adv. Mater. 29(37), 1702298. https://doi.org/10.1002/adma.201702298.
  70. Xu, X.Y. and Yan, B.J.A.F.M. (2017b), "Intelligent molecular searcher from logic computing network based on Eu (III) functionalized UMOFs for environmental monitoring", Adv. Funct. Mater. 27(23), 1700247. https://doi.org/10.1002/adfm.201700247.
  71. Xue, J.H., Xiao, K.P., Wang, Y.S., Liu, L., Li, J.Q., Li, M., Qu, Y.N. and Xiao, X.L. (2020), "Aggregation-induced photoluminescence enhancement of protamine-templated gold nanoclusters for 1-hydroxypyrene detection using 9- hydroxyphenanthrene as a sensitizer", Colloid Surf. B, 189, 110873. https://doi.org/10.1016/j.colsurfb.2020.110873.
  72. Yang, M., Wang, Y., Ren, J., Li, M., Wang, Q., Li, N., Zhu, J. and Zou, X. (2019), "A rapid and sensitive method of determination of 1-hydroxypyrene glucuronide in urine by UPLC-FLD", Chromatographia, 82(5), 835-842. https://doi.org/10.1007/s10337-019-03713-0
  73. Zeng, X., Hu, J., Zhang, M., Wang, F., Wu, L. and Hou, X. (2020), "Visual detection of fluoride anions using mixed lanthanide metal-organic frameworks with a smartphone", Anal. Chem., 92(2), 2097-2102. https://doi.org/10.1021/acs.analchem.9b04598.
  74. Zhang, Z.X., Zhu, Y.X. and Zhang, Y.J.T. (2015), "Simultaneous determination of 9-ethylphenanthrene, pyrene and 1-hydroxypyrene in an aqueous solution by synchronous fluorimetry using the double scans method and hydroxyl-propyl beta-cyclodextrin as a sensitizer", Talanta, 144, 836-843. https://doi.org/10.1016/j.talanta.2015.05.067.
  75. Zhang, F., Yao, H., Chu, T., Zhang, G., Wang, Y. and Yang, Y.J.C.A.E.J. (2017a), "A lanthanide MOF thin-film fixed with Co3O4 nano-anchors as a highly efficient luminescent sensor for nitrofuran antibiotics", Chem. Eur. J., 23(43), 10293-10300. https://doi.org/10.1002/chem.201701852.
  76. Zhang, K., Xie, X., Li, H., Gao, J., Nie, L., Pan, Y., Xie, J., Tian, D., Liu, W. and Fan, Q.J.A.M. (2017b), "Highly water-stable lanthanide-oxalate MOFs with remarkable proton conductivity and tunable luminescence", Adv. Mater., 29(34), 1701804. https://doi.org/10.1002/adma.201701804.
  77. Zhou, J., Li, H., Zhang, H., Li, H., Shi, W. and Cheng, P.J.A.M. (2015), "A bimetallic lanthanide metal-organic material as a self-calibrating color-gradient luminescent sensor", Adv. Mater., 27(44), 7072-7077. https://doi.org/10.1002/adma.201502760.
  78. Zhou, Y., Yang, Q., Cuan, J., Wang, Y., Gan, N., Cao, Y. and Li, T. (2018), "A pyrene-involved luminescent MOF for monitoring 1-hydroxypyrene, a biomarker for human intoxication of PAH carcinogens", Analyst, 143(15), 3628-3634. https://doi.org/10.1039/C8AN00909K.
  79. Zhou, H.Q., He, Y., Hu, J.Y., Chung, L.H., Gu, Q., Liao, W.M., Zeller, M., Xu, Z. and He, J. (2021), "Conjugated crosslinks boost the conductivity and stability of a single crystalline metal-organic framework", Chem. Commun., 57(2), 187-190. https://doi.org/10.1039/D0CC06765B.