DOI QR코드

DOI QR Code

GaAs on Si substrate with dislocation filter layers for wafer-scale integration

  • Kim, HoSung (Optical Communication Components Research Section, Photonic/Wireless Devices Research Division, Electronics and Telecommunications Research Institute) ;
  • Kim, Tae-Soo (Optical Communication Components Research Section, Photonic/Wireless Devices Research Division, Electronics and Telecommunications Research Institute) ;
  • An, Shinmo (Optical Communication Components Research Section, Photonic/Wireless Devices Research Division, Electronics and Telecommunications Research Institute) ;
  • Kim, Duk-Jun (Optical Communication Components Research Section, Photonic/Wireless Devices Research Division, Electronics and Telecommunications Research Institute) ;
  • Kim, Kap Joong (Quantum Optics Research Section, Quantum Technology Research Department, Electronics and Telecommunications Research Institute) ;
  • Ko, Young-Ho (Quantum Optics Research Section, Quantum Technology Research Department, Electronics and Telecommunications Research Institute) ;
  • Ahn, Joon Tae (Photonic Convergence Components Research Section, Photonic/Wireless Devices Research Division, Electronics and Telecommunications Research Institute) ;
  • Han, Won Seok (Optical Communication Components Research Section, Photonic/Wireless Devices Research Division, Electronics and Telecommunications Research Institute)
  • Received : 2021.01.06
  • Accepted : 2021.05.04
  • Published : 2021.10.01

Abstract

GaAs on Si grown via metalorganic chemical vapor deposition is demonstrated using various Si substrate thicknesses and three types of dislocation filter layers (DFLs). The bowing was used to measure wafer-scale characteristics. The surface morphology and electron channeling contrast imaging (ECCI) were used to analyze the material quality of GaAs films. Only 3-㎛ bowing was observed using the 725-㎛-thick Si substrate. The bowing shows similar levels among the samples with DFLs, indicating that the Si substrate thickness mostly determines the bowing. According to the surface morphology and ECCI results, the compressive strained indium gallium arsenide/GaAs DFLs show an atomically flat surface with a root mean square value of 1.288 nm and minimum threading dislocation density (TDD) value of 2.4×107 cm-2. For lattice-matched DFLs, the indium gallium phosphide/GaAs DFLs are more effective in reducing the TDD than aluminum gallium arsenide/GaAs DFLs. Finally, we found that the strained DFLs can block propagate TDD effectively. The strained DFLs on the 725-㎛-thick Si substrate can be used for the large-scale integration of GaAs on Si with less bowing and low TDD.

Keywords

Acknowledgement

This work was supported by the Electronics and Telecommunications Research Institute (ETRI) grant funded by the Republic of Korea (21ZB1120, Development of creative technology for ICT) and the ICT R&D program of MSIP/IITP, Republic of Korea (018-0-00220, Development of low power on-board integrated 400-Gbps transmitting/receiving optical engine for hyper-scale data center; 2018-0-01632, Development of devices and components beyond single-carrier 400G for next generation optical transmission networks).

References

  1. J. W. Lee et al., Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates, Appl. Phys. Lett. 50 (1987), 31-33. https://doi.org/10.1063/1.98117
  2. M. Yamaguchi, T. Nishioka, and M. Sugo, Analysis of strained-layer superlattice effects on dislocation density reduction in GaAs on Si substrates, Appl. Phys. Lett. 54 (1989), 24-26. https://doi.org/10.1063/1.100819
  3. M. Yamaguchi, Dislocation density reduction in heteroepitaxial III-V compound films on Si substrates for optical devices, J. Mater. Res. 6 (1991), 376-384. https://doi.org/10.1557/JMR.1991.0376
  4. V. Joshkin et al., Biaxial compression in GaAs thin films grown on Si, J. Cryst. Growth 147 (1995), 13-18. https://doi.org/10.1016/0022-0248(94)00620-2
  5. P. J. Taylor et al., Optoelectronic device performance on reduced threading dislocation density GaAs/Si, J. Appl. Phys. 89 (2001), 4365-4375. https://doi.org/10.1063/1.1347000
  6. K. Akahori et al., Improvement of the MOCVD-grown InGaP-on-Si towards high-efficiency solar cell application, Solar Energy Mater. Solar Cells 66 (2001), 593-598. https://doi.org/10.1016/S0927-0248(00)00244-0
  7. W.-Y. Uen et al., Heteroepitaxial growth of GaAs on Si by MOVPE using a-GaAs/a-Si double-buffer layers, J. Cryst. Growth 295 (2006), 103-107. https://doi.org/10.1016/j.jcrysgro.2006.07.026
  8. K. Ma et al., Low-temperature growth of GaAs on Si used for ultrafast photoconductive switches, IEEE J. Quantum Electron. 40 (2004), 800-804. https://doi.org/10.1109/JQE.2004.828234
  9. N. Hayafuji et al., Effectiveness of AlGaAs/GaAs superlattices in reducing dislocation density in GaAs on Si, J. Cryst. Growth 93 (1988), 494-498. https://doi.org/10.1016/0022-0248(88)90572-6
  10. Y. Shi et al., Optimization of the GaAs-on-Si substrate for microelectromechanical systems (MEMS) sensor application, Materials 5 (2012), 2917-2926. https://doi.org/10.3390/ma5122917
  11. M. Razeghi et al., High-quality GaInAsP/InP heterostructures grown by low-pressure metalorganic chemical vapor deposition on silicon substrates, Appl. Phys. Lett. 52 (1988), 209-211. https://doi.org/10.1063/1.99521
  12. M. Razeghi, Recent advances in III-V compounds on silicon, Prog. Crystal Growth Charact. 19 (1989), 21-37. https://doi.org/10.1016/0146-3535(89)90010-5
  13. L. Sharma and R. K. Purohit, Semiconductor-heterojunctions, Chapter 4, Pergamon, Oxford, 1974.
  14. I. George et al., Dislocation filters in GaAs on Si, Semicond. Sci. Technol. 30 (2015), 114004. https://doi.org/10.1088/0268-1242/30/11/114004
  15. M. Tang et al., Optimizations of defect filter layer for 1.3-um InAs/GaAs quantum-dot lasers monolithically grown on Si substrates, IEEE J. Quantum Electron. 22 (2016), 1900207.
  16. T. Wang et al., 1.3-um InAs/GaAs quantum-dot lasers monolithically grown on Si substrates, Opt. Express 19 (2011), 11381-11386. https://doi.org/10.1364/OE.19.011381
  17. K. Li et al., O-band InAs/GaAs quantum dot laser monolithically integrated on exact (001) Si substrate, J. Cryst. Growth 511 (2019), 56-60. https://doi.org/10.1016/j.jcrysgro.2019.01.016
  18. B. Shi et al., MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 um quantum dot laser applications, Appl. Phys. Lett. 114 (2019), 172102. https://doi.org/10.1063/1.5090437
  19. B. Wang et al., Control wafer bow of InGaP on 200 mm Si by strain engineering, Semicond. Sci. Technol. 32 (2017), 125013. https://doi.org/10.1088/0268-1242/32/12/125013
  20. N. Hayafuji et al., Crack propagation and mechanical fracture in GaAs-on-Si, Jpn. J. Appl. Phys. 30 (1991), 459-463. https://doi.org/10.1143/JJAP.30.459
  21. R. M. Lum, Effects of misfit dislocations and thermally induced strain on the film properties of heteroepitaxial GaAs on Si, J. Appl. Phys. 64 (1988), 6727-6732. https://doi.org/10.1063/1.342004
  22. B. Wang et al., Effectiveness of InGaAs/GaAs superlattice dislocation filter layers epitaxially grown on 200 mm Si wafers with and without Ge buffers, Semicond. Sci. Tehcnol. 35 (2020), 095036. https://doi.org/10.1088/1361-6641/ab9a16
  23. Y. H. Ko et al., High quality GaAs epitaxially grown on Si (001) substrate through AlAs nucleation and thermal cycle annealing, Solid State Electron. 166 (2020), 107763. https://doi.org/10.1016/j.sse.2019.107763
  24. V. K. Yang et al., Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates, J. Appl. Phys. 93 (2003), 3859-3865. https://doi.org/10.1063/1.1558963
  25. W. Natsu et al., Effects of support method and mechanical property of 300 mm silicon wafer on sori measurement, Precis. Eng. 29 (2005), 19-26. https://doi.org/10.1016/j.precisioneng.2004.03.004
  26. J. Li, Relationship between dislocations and misfit strain relaxation in InGaAs/GaAs heterostructures, Cryst. Eng. Comm. 19 (2017), 88-92. https://doi.org/10.1039/C6CE02103D
  27. Z. Liu et al., Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon, J. Light. Technol. 38 (2020), 240-248. https://doi.org/10.1109/jlt.2019.2925598
  28. J. R. Gong, S. J. Hou, and S. F. Tseng, Characteristics of misfit dislocations in the GaInP/GaAs heterostructures grown by metalorganic chemical vapor deposition, J. Cryst. Growth 253 (2003), 46-51. https://doi.org/10.1016/S0022-0248(03)00999-0
  29. K. Ozasa et al., Effect of misfit strain on physical properties of InGaP grown by metalorganic molecular beam epitaxy, J. Appl. Phys. 68 (1990), 107-111. https://doi.org/10.1063/1.347100
  30. W. K. Loke et al., MOCVD growth of InGaP/GaAs heterojunction bipolar transistors on 200 mm Si wafers for heterogeneous integration with Si CMOS, Semicond. Sci. Technol. 33 (2018), 115011. https://doi.org/10.1088/1361-6641/aae247