DOI QR코드

DOI QR Code

Analysis on Vertical Structure of Sea Fog in the West Coast of the Korean Peninsula by Using Drone

드론을 활용한 한반도 서해 연안의 해무 연직구조 분석

  • Jeon, Hye-Rim (High Impact Weather Research Laboratory, Forecast Research Department, National Institute of Meteorological Sciences) ;
  • Park, Mi Eun (High Impact Weather Research Laboratory, Forecast Research Department, National Institute of Meteorological Sciences) ;
  • Lee, Seung Hyeop (High Impact Weather Research Laboratory, Forecast Research Department, National Institute of Meteorological Sciences) ;
  • Park, Mir (High Impact Weather Research Laboratory, Forecast Research Department, National Institute of Meteorological Sciences) ;
  • Lee, Yong Hee (Meteorological Applied Research Department, National Institute of Meteorological Sciences)
  • 전혜림 (국립기상과학원 예보연구부) ;
  • 박미은 (국립기상과학원 예보연구부) ;
  • 이승협 (국립기상과학원 예보연구부) ;
  • 박미르 (국립기상과학원 예보연구부) ;
  • 이용희 (국립기상과학원 기상응용연구부)
  • Received : 2022.07.25
  • Accepted : 2022.10.28
  • Published : 2022.12.31

Abstract

A drone has recently got attention as an instrument for weather observation in lower atmosphere because it can produce the high spatiotemporal resolution weather data even though the weather phenomenon is inaccessible. Sea fog is a weather phenomenon occurred in lower atmosphere, and has observational limitations because it occurs on the sea. Therefore, goal of this study is to analyze the vertical structures about inflow, development and dispersion of sea fog using the high-resolution weather data with the meteorological sensor-equipped drone. This study observed sea fogs in the west coast of the Korean peninsula from March to October 2021 and investigated one sea fog inflowed into the coast on June 8th 2021. θe - qv diagrams (θe: equivalent potential temperature, qv: water vapor ratio) and vertical wind structures were analyzed. At inflow of sea fog, moist adiabatically stable layer was formed in 0-300 m and prevailing wind was switched from south-southwesterly to west-southwesterly under 120 m. Both changes are favorable for sea fog on the location. θe and qv plummeted in a layer 0-183 m. The inflowed sea fog developed from 183 m to 327 m by mixing with ambient atmosphere on top of sea fog. Also, strong mechanical turbulence near ground drove a vertical mixing under stable layer. At dispersion of sea fog, as θe on ground gradually increased, air condition was changed to neutral. Evaporation occurred on both bottom and top in sea fog. These results induced dissipation of sea fog.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 「기상업무지원기술개발연구」 "관측기술 지원 및 활용연구(KMA2018-00123)"의 지원으로 수행되었습니다.

References

  1. Betts, A. K., 1982: Cloud thermodynamic models in saturation point coordinates. J. Atmos. Sci., 39, 2182-2191. https://doi.org/10.1175/1520-0469(1982)039<2182:CTMISP>2.0.CO;2
  2. Betts, A. K., and B. A. Albrecht, 1987: Conserved variable analysis of the convective boundary layer thermodynamic structure over the tropical oceans. J. Atmos. Sci., 44, 83-99. https://doi.org/10.1175/1520-0469(1987)044<0083:CVAOTC>2.0.CO;2
  3. Brosy, C., K. Krampf, M. Zeeman, B. Wolf, W. Junkermann, K. Schafer, S. Emeis, and H. Kunstmann, 2017: Simultaneous multicopter-based air sampling and sensing of meteorological variables. Atmos. Meas. Tech., 10, 2773-2784, doi:10.5194/amt-10-2773-2017.
  4. Choi, H., 2001: Numerical prediction on fog formation affected by the Yellow Sea and mountain. J. Korean Meteorl. Soc., 37, 261-282.
  5. Chong, J., S. Lee, S. Shin, S. E. Hwang, Y. Lee, J. Kim, and S. Kim, 2019: Research on the meteorological technology development using drones in the fourth industrial revolution. J. Korea Content. Assoc., 19, 12-21, doi:10.5392/JKCA.2019.19.11.012 (in Korean with English abstract).
  6. Chong, J., S. Shin, S. E. Hwang, S. Lee, S. H. Lee, B. J. Kim, and S. Kim, 2020: Vertical measurement and analysis of meteorological factors over Boseong region using meteorological drones. J. Korean Earth Sci. Soc., 41, 575-587, doi:10.5467/JKESS.2020.41.6.575 (in Korean with English abstract).
  7. Gao, S., H. Lin, B. Shen, and G. Fu, 2007: A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling. Adv. Atmos. Sci., 24, 65-81. https://doi.org/10.1007/s00376-007-0065-2
  8. Hemingway, B. L., A. E. Frazier, B. R. Elbing, and J. D. Jacob, 2017: Vertical sampling scales for atmospheric boundary layer measurements from small unmanned aircraft systems (sUAS). Atmosphere, 8, 176, doi:10.3390/atmos8090176.
  9. Heo, K. Y., K. J. Ha, L. Mahrt, and J. S. Shim, 2010: Comparison of advection and steam fogs: From direct observation over the sea. Atmos. Res., 98, 426-437, doi:10.1016/j.atmosres.2010.08.004.
  10. Kim, K. H., M. S. Kim, S. W. Seo, P. S. Kim, D. H. Kang, and B. H. Kwon, 2015: Quality evaluation of wind vectors from UHF wind profiler using radiosonde measurements. J. Environ. Sci. Int., 24, 133-150, doi:10.5322/JESI.2015.24.1.133 (in Korean with English abstract).
  11. Kim, M. H., S. W. Park, and J. H. Bae, 2020: Flight delay and cancellation analysis and management strategies. Korea Transport Institute (in Korean).
  12. Kim, Y., S. Ku, and C. Park, 2018: Flow analysis and flight experiment for optimum height of weather data sensor. J. Adv. Navig. Technol., 22, 551-556, doi:10.12673/jant.2018.22.6.551 (in Korean with English abstract).
  13. Korea Meteorological Administratio [KMA], 2018: Study on the Improvement of the Advancement of Met Ocean Service and Disaster Management Capacity. KMA (in Korean).
  14. Kwak, K. H., S. H. Lee, A. Y. Kim, K. C. Park, S. E. Lee, B. S. Han, J. Lee, and Y. S. Park, 2020: Daytime evolution of lower atmospheric boundary layer structure: Comparative observations between a 307-m meteorological tower and a rotary-wing UAV. Atmosphere, 11, 1142, doi:10.3390/atmos11111142.
  15. Lee, E., J. H. Kim, K. Y. Heo, and Y. K. Cho, 2021: Advection fog over the eastern Yellow Sea: WRF simulation and its verification by satellite and in situ observations. Remote Sens., 13, 1480, doi:10.3390/rs13081480.
  16. Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Q. J. R. Meteorl. Soc., 94, 292-309. https://doi.org/10.1002/qj.49709440106
  17. Moeng, C. H., 1987: Large-Eddy simulation of a stratus-topped boundary layer. Part II: Implications for mixed-layer modeling. J. Atmos. Sci., 44, 1605-1614. https://doi.org/10.1175/1520-0469(1987)044<1605:LESOAS>2.0.CO;2
  18. Moeng, C. H., 2000: Entrainment rate, cloud fraction, and liquid water path of PBL stratocumulus clouds. J. Atmos. Sci., 57, 3627-3643. https://doi.org/10.1175/1520-0469(2000)057<3627:ERCFAL>2.0.CO;2
  19. Nicholls, S., and J. D. Turton, 1986: An observational study of the structure of stratiform cloud sheets: Part II. Entrainment. Q. J. R. Meteorl. Soc., 112, 461-480. https://doi.org/10.1002/qj.49711247210
  20. Oyj, V., 2013: Humidity Conversion Formulas: Calculation Formulas for Humidity. Vaisala.
  21. Paluch, I. R., and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer, J. Atmos. Sci., 48, 2141-2158. https://doi.org/10.1175/1520-0469(1991)048<2141:SCFITM>2.0.CO;2
  22. Roach, W. T., 1994: Back to basics: Fog: Part 1-Definitions and basic physics. Weather, 49, 411-415. https://doi.org/10.1002/j.1477-8696.1994.tb05962.x
  23. Taylor, M. G. I., 1917: The formation of fog and mist. Q. J. R. Meteorl. Soc., 43, 241-268. https://doi.org/10.1002/qj.49704318302
  24. The Korea Road Traffic Authority [KoROAD], 2021: Traffic Accident Statistics Analysis. 2021 ed. KoROAD.
  25. Won, D. J., S. Y. Kim, K. E. Kim, and K. D. Min, 2000: Analysis of meteorological and oceanographic characteristics on the sea fog over the Yellow Sea. J. Atmos. Sci., 36, 631-642. https://doi.org/10.1175/1520-0469(1979)036<0631:BOTWFI>2.0.CO;2
  26. Yang, Y., and S. Gao, 2020: The impact of turbulent diffusion driven by fog-top cooling on sea fog development. J. Geophys. Res. Atmos., 125, e2019JD031562, doi:10.1029/2019JD031562.