DOI QR코드

DOI QR Code

Effects of inclined bedrock on dissimilar pile composite foundation under vertical loading

  • Kaiyu, Jiang (Key of Laboratory for RC and PRC Structure of Education Ministry, Southeast University) ;
  • Weiming, Gong (Key of Laboratory for RC and PRC Structure of Education Ministry, Southeast University) ;
  • Jiang, Xu (College of Civil Science and Engineering, Yangzhou University) ;
  • Guoliang, Dai (Key of Laboratory for RC and PRC Structure of Education Ministry, Southeast University) ;
  • Xia, Guo (Nuclear Industry Huzhou Survey Planning & Design Institute Co., Ltd.)
  • Received : 2022.07.04
  • Accepted : 2022.11.23
  • Published : 2022.12.10

Abstract

Pile composite foundation (PCF) has been commonly applied in practice. Existing research has focused primarily on semi-infinite media having equal pile lengths with little attention given to the effects of inclined bedrock and dissimilar pile lengths. This investigation considers the effects of inclined bedrock on vertical loaded PCF with dissimilar pile lengths. The pile-soil system is decomposed into fictitious piles and extended soil. The Fredholm integral equation about the axial force along fictitious piles is then established based on the compatibility of axial strain between fictitious piles and extended soil. Then, an iterative procedure is induced to calculate the PCF characteristics with a rigid cap. The results agree well with two field load tests of a single pile and numerical simulation case. The settlement and load transfer behaviors of dissimilar 3-pile PCFs and the effects of inclined bedrock are analyzed, which shows that the embedded depth of the inclined bedrock significantly affects the pile-soil load sharing ratios, non-dimensional vertical stiffness N0/wdEs, and differential settlement for different length-diameter ratios of the pile l/d and pile-soil stiffness ratio k conditions. The differential settlement and pile-soil load sharing ratios are also influenced by the inclined angle of the bedrock for different k and l/d. The developed model helps better understand the PCF characteristics over inclined bedrock under vertical loading.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China (52178317, 52078128), the Technological Research Program of Chongqing Municipal Education Commission (KJQN202101236), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB560034). The authors are grateful for their support.

References

  1. Abdrabbo, F.M. and El-wakil, A.Z. (2015), "Behavior of pile group incorporating dissimilar pile embedded into sand", Alexandria Eng. J., 54(2), 175-182. https://doi.org/10.1016/j.aej.2014.11.001.
  2. Bai, X.H., He, W.B., Jia, J.G. and Han, Y.S. (2006), "Experimental study on the interaction mechanism of cap-pile group-soil", Mar. Georesour. Geotec., 24(3), 173-182. https://doi.org/10.1080/10641190600788254.
  3. Banerjee, P.K. and Davies, T.G. (1978), "The behaviour of axially and laterally loaded single piles embedded in nonhomogeneous soils", Geotechnique, 28(3), 309-326. https://doi.org/10.1680/geot.1978.28.3.309.
  4. Burmister, D.M. (1945), "The general theory of stresses and displacements in layered systems. I", J. Appl. Phys., 16(2), 89-94. https://doi.org/10.1063/1.1707558.
  5. Butterfield, R. and Banerjee, P.K. (1971), "The elastic analysis of compressible piles and pile groups", Geotechnique, 21, 43-60. https://doi.org/10.1680/geot.1971.21.1.43.
  6. Butterfield, R. and Banerjee, P.K. (1971), "The problem of pile group-pile cap interaction", Geotechnique, 21(2), 135-142. https://doi.org/10.1680/geot.1971.21.2.135.
  7. Chen, S.L., Song, C.Y. and Chen, L.Z. (2011), "Two-pile interaction factor revisited", Can. Geotech. J., 48(5), 754-766. https://doi.org/10.1139/t10-095.
  8. Fatolahzadeh, S., Mehdizadeh, R. and Nadi, B. (2020), "Study of the effect of an inclined bedrock on the bearing capacity of shallow foundations", Iranian J. Sci. Technol. T. Civil Eng., 44(4), 1359-1372. https://doi.org/https://doi.org/10.1007/s40996-020-00418-5.
  9. Golberg, M.A. (1979), Solution methods for integral equations.
  10. Han, J. and Jiang, G. (2011), "Influence of inclined bedrock on undrained bearing capacity of shallow strip foundations", Adv. Geotech. Eng., 322-331. https://doi.org/10.1061/41165(397)34.
  11. Hassona, F., Moussa Abu Bakr, A., Hakeem, B.M., et al. (2022), "Finite element simulation of piled raft capacity under different loading conditions", J. Adv. Eng. Trends, 42(1), 141-155. https://doi.org/10.21608/jaet.2021.70440.1106.
  12. Huang, M.S., Liang, F.Y. and Jiang, J. (2011), "A simplified nonlinear analysis method for piled raft foundation in layered soils under vertical loading", Comput. Geotech., 38(7), 875-882. https://doi.org/10.1016/j.compgeo.2011.06.002.
  13. Kitiyodom, P. and Matsumoto, T. (2002), "A simplified analysis method for piled raft and pile group foundations with batter piles", Int. J. Numer. Anal. Method. Geomech., 26(13), 1349-1369. https://doi.org/10.1002/nag.248.
  14. Kitiyodom, P. and Matsumoto, T. (2003), "A simplified analysis method for piled raft foundations in non-homogeneous soils", Int. J. Numer., 27, 85-109. https://doi.org/10.1002/nag.264.
  15. Kodikara, J.K. and Johnston, I.W. (1994), "Analysis of compressible axially loaded piles in rock", Int. J. Numer. Anal. Method. Geomech., 18(6), 427-437. https://doi.org/https://doi.org/10.1002/nag.1610180606.
  16. Kuwabara, F. (1989), "An elastic analysis for piled raft foundations in a homogeneous soil", Soils Found., 29(1), 82-92. https://doi.org/10.3208/sandf1972.29.82.
  17. Liang, F.Y. and Song, Z. (2014), "BEM analysis of the interaction factor for vertically loaded dissimilar piles in saturated poroelastic soil", Comput. Geotech., 62, 223-231. https://doi.org/10.1016/j.compgeo.2014.07.016
  18. Liang, F.Y., Chen, L.Z. and Han, J. (2009), "Integral equation method for analysis of piled rafts with dissimilar piles under vertical loading", Comput. Geotech., 36(3), 419-426. https://doi.org/10.1016/j.compgeo.2008.08.007.
  19. Ma, Q., Mou, J. and Xiao, H.L. (2021), "Experimental and numerical studies on bearing characteristics of hexagonalsection composite foundation element", Iranian J. Sci. Tech. T. Civil Eng., 45(2), 929-939. https://doi.org/10.1007/s40996-020-00389-7.
  20. Mindlin, R.D. (1936), "Force at a point in the interior of a semi-infinite solid", Physics, 7(5), 195-202. https://doi.org/10.1063/1.1745385.
  21. Ministry of Housing and Urban-Rural Development of the People's Republic of China[S]. Beijing, China Architecture Publishing
  22. Ministry of Housing and Urban-Rural Development of the People's Republic of China [S]. Beijing, China Architecture Publishing.
  23. Muki, R. and Sternberg, E. (1970), "Elastostatic load-transfer to a half-space from a partially embedded axially loaded rod", Int. J. Solids Struct., 6(1), 69-90. https://doi.org/10.1016/0020-7683(70)90082-X.
  24. Poulos, H.G. (1967), "Stresses and displacements in an elastic layer underlain by a rough rigid base", Geotechnique, 17(4), 378-410. https://doi.org/https://doi.org/10.1680/geot.1967.17.4.378.
  25. Poulos, H.G. and Davis, E.H. (1980), Pile foundation analysis and design.
  26. Qu, L.M., Ding, X.M., Zheng, C.J., Wu, C. and Cao, G. (2021), "Numerical and test study on vertical vibration characteristics of pile group in slope soil topography", Earthq. Eng. Eng. Vib., 20(2), 377-390. https://doi.org/10.1007/s11803-021-2026-7.
  27. Randolph, M.F. and Wroth, C.P. (1979), "An analysis of the vertical deformation of pile groups", 29(4), 423-439. https://doi.org/10.1680/geot.1979.29.4.423.
  28. Roh, Y., Kim, G., Kim, I. and Lee, J. (2019), "Effects of rocksupport and inclined-layer conditions on load carrying behavior of piled rafts", Geomech. Eng., 18(4), 363-371. https://doi.org/10.12989/gae.2019.18.4.363.
  29. Saeedi Azizkandi, A., Rasouli, H. and Baziar, M.H. (2018), "Load sharing and carrying mechanism of piles in non-connected pile rafts using a numerical approach", Int. J. Civil Eng., 17(6), 793-808. https://doi.org/10.1007/s40999-018-0356-2.
  30. Shen, W.Y., Chow, Y.K. and Yong, K.Y. (1999), "Variational solution for vertically loaded pile groups in an elastic halfspace", Geotechnique, 49(2), 199-213. https://doi.org/https://doi.org/10.1680/geot.1999.49.2.199.
  31. Shen, W.Y., Chow, Y.K. and Yong, K.Y. (2000), "A variational approach for the analysis of pile group-pile cap interaction", Geotechnique, 50(4), 349-357. https://doi.org/https://doi.org/10.1680/geot.2000.50.4.349.
  32. Wong, S.C. and Poulos, H.G. (2005), "Approximate pile-to-pile interaction factors between two dissimilar piles", Comput. Geotech., 32(8), 613-618. https://doi.org/https://doi.org/10.1016/j.compgeo.2005.11.001.
  33. Yang, M.H., Zhang, X.W. and Zhao, M.H. (2011), "A simplified approach for settlement calculation of pile groups considering pile-to-pile interaction in layered soils", J. Central South Univ. Technol., 18(6), 2131-2136. https://doi.org/10.1007/s11771-011-0953-6
  34. Yu, J.L., Zhou, J.J., Gong, X.N., Xu, R.Q., Li, J.Y., Xu, S.D. (2020), "Centrifuge study on behavior of rigid pile composite foundation under embankment in soft soil", Acta Geotechnica, 16(6), 1909-1921. https://doi.org/10.1007/s11440-020-01109-1.
  35. Zhang, D.M., Huang, Z.K., Wang, R.L., Yan, J.Y. and Zhang, J. (2018), "Grouting-based treatment of tunnel settlement: Practice in Shanghai", Tunn. Undergr. Sp. Tech., 80, 181-196. https://doi.org/10.1016/j.tust.2018.06.017.
  36. Zhang, Z.T., Gong, W.M., DaiG.L., Cao, X.L., Zhu, Y. and Huang, H. (2021), "Field tests on bearing characteristics of largediameter combined tip-and-side post grouted drilled shafts", Appl. Sci., 11(24), https://doi.org/10.3390/app112411883.