DOI QR코드

DOI QR Code

Scale effects on triaxial peak and residual strength of granite and preliminary PFC3D models

  • Xian, Estevez-Ventosa (CINTECX, GESSMin group, Department of Natural Resources and Environmental Engineering, University of Vigo, Campus Lagoas) ;
  • Uxia, Castro-Filgueira (CINTECX, GESSMin group, Department of Natural Resources and Environmental Engineering, University of Vigo, Campus Lagoas) ;
  • Manuel A., Gonzalez-Fernandez (CINTECX, GESSMin group, Department of Natural Resources and Environmental Engineering, University of Vigo, Campus Lagoas) ;
  • Fernando, Garcia-Bastante (CINTECX, GESSMin group, Department of Natural Resources and Environmental Engineering, University of Vigo, Campus Lagoas) ;
  • Diego, Mas-Ivars (Swedish Nuclear Fuel and Waste Management Company (SKB)) ;
  • Leandro R., Alejano (CINTECX, GESSMin group, Department of Natural Resources and Environmental Engineering, University of Vigo, Campus Lagoas)
  • 투고 : 2021.11.10
  • 심사 : 2022.11.15
  • 발행 : 2022.12.10

초록

Research studies on the scale effect on triaxial strength of intact rocks are scarce, being more common those in uniaxial strength. In this paper, the authors present and briefly interpret the peak and residual strength trends on a series of triaxial tests on different size specimens (30 mm to 84 mm diameter) of an intact granitic rock at confinements ranging from 0 to 15 MPa. Peak strength tends to grow from smaller to standard-size samples (54 mm) and then diminishes for larger values at low confinement. However, a slight change in strength is observed at higher confinements. Residual strength is observed to be much less size-dependent. Additionally, this study introduces preliminary modelling approaches of these laboratory observations with the help of three-dimensional particle flow code (PFC3D) simulations based on bonded particle models (BPM). Based on previous studies, two modelling approaches have been followed. In the first one, the maximum and minimum particle diameter (Dmax and Dmin) are kept constant irrespective of the sample size, whereas in the second one, the resolution (number of particles within the sample or ϕv) was kept constant. Neither of these approaches properly represent the observations in actual laboratory tests, even if both of them show some interesting capabilities reported in this document. Eventually, some suggestions are provided to proceed towards improving modelling approaches to represent observed scale effects.

키워드

과제정보

The authors acknowledge the Spanish Ministry of Science and Innovation for funding this study as part of the project awarded under Contract Reference No. RTI2018-093563-B-I00, partially financed by means of ERDF funds from the EU. Itasca Consulting Group is acknowledged for inviting the second author in their Itasca Education Partnership Program, which provides her with the PFC program.

참고문헌

  1. Ajamzadeh, M.R., Sarfarazi, V., Haeri, H. and Dehghani, H. (2018), "The effect of micro parameters of PFC software on the model calibration", Smart Struct. Syst., 22(6), 643-662. https://doi.org/10.12989/sss.2018.22.6.643. 
  2. Alejano, LR., Arzua, J., Bozorgzadeh, N. and Harrison, J P. (2017), "Triaxial strength and deformability of intact and increasingly jointed granite samples", Int. J. Rock. Mech. Min. Sci., 95, 87-103. https://doi.org/10.1016/j.ijrmms.2017.03.009. 
  3. Alejano, L.R., Walton, G. and Gaines, S. (2021), "Residual strength of granitic rocks", Tunn. Undergr. Sp. Tech,, 118, 104189. https://doi.org/10.1016/j.tust.2021.104189. 
  4. Arzua, J. and Alejano, L.R. (2013), "Dilation in granite during servo-controlled triaxial strength tests", Int. J. Rock. Mech. Min. Sci., 61, 43-56. https://doi.org/10.1016/j.ijrmms.2013.02.007. 
  5. Bieniawski, Z.T. (1967), "The effect of specimen size on compressive strength of coal", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 5, 325-335. https://doi.org/10.1016/0148-9062(68)90004-1. 
  6. Brace, W.F. (1981), "The effect of size on mechanical properties of rock", Geophys. Res. Lett., 8, 651-652. https://doi.org/10.1029/GL008i007p00651. 
  7. Castro-Filgueira, U., Alejano, L.R. and Mas-Ivars, D. (2020), "Particle flow code simulation of intact and fissured granitic rock samples", J. Rock. Mech. Geotech. Eng., 12, 960-974. https://doi.org/10.1016/j.jrmge.2020.01.005. 
  8. Castro-Filgueira, U., Alejano, L.R., Arzua, J. and Mas-Ivars, D. (2016), "Numerical simulation of the stress-strain behavior of intact granite specimens with particle flow code", Proceedings of the EUROCK 2016. International Society for Rock Mechanics (ISRM): 2016, Cappadocia, Turkey, August. 
  9. Castro-Filgueira, U., Alejano, L.R., Arzua, J. and Mas-Ivars, D. (2017), "Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties or rocks", Proceedings of the EUROCK 2017. International Society for Rock Mechanics (ISRM); 2017, Ostrava, Czech Republic, June. 
  10. Chinaei, F., Ahangari, K. and Shirinabadi, R. (2021), "Hoek-Brown failure criterion for damage analysis of tunnels subjected to blast load". Geomech. Eng., 26(1), 41-47. https://doi.org/10.12989/gae.2021.26.1.041. 
  11. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002. 
  12. Coetzee, C.J. (2017), "Review: Calibration of the discrete element method". Powder Technology 310, 104-142. https://doi.org/10.1016/j.powtec.2017.01.015. 
  13. Cunha, A.P. (1990), "Scale effects in rock mechanics", Proceedings of the 1st Int. Symp. on Scale Effects in Rock Masses, Balkema, Rotterdam, The Neederlands. 
  14. De Simone, M., Souza, L.M.S. and Roehl, D. (2019), "Estimating DEM micro-parameters for uniaxial compression simulation with genetic programming", Int. J. Rock. Mech. Min. Sci., 118, 33-41. https://doi.org/10.1016/j.ijrmms.2019.03.024. 
  15. Ding, X., Zhang, L., Zhu, H. and Zhang, Q. (2014), "Effect of model scale and particle size distribution on PFC3D simulation results", Rock Mech. Rock Eng., 47(6), 2139-2156. https://doi.org/10.1007/s00603-013-0533-1. 
  16. Fan, J., Chen J., Jiang, D., Wu, J., Shu, C. and Liu, W. (2019), "A stress model reflecting the effect of the friction angle on rockbursts in coal mines", Geomech. Eng., 18(1), 21-27. https://doi.org/10.12989/gae.2019.18.1.021. 
  17. Gao, F.Q. and Kang, H.P. (2016), "Effects of pre-existing discontinuities on the residual strength of rock mass - Insight from a discrete element method simulation", J. Struct. Geol., 85, 40-50. https://doi.org/10.1016/j.jsg.2016.02.010. 
  18. Gonzalez-Fernandez, M.A., Estevez-Ventosa, X., Alonso, E. and Alejano, L.R. (2021), "Analysis of size effectss on the Hoek-Brown failure chriterion of intact granite samples", Proceedings of the Eurock 2021 Torino. IOP Conference Series: Earth and Environmental Science, 2021, Torino, Italy, September. 
  19. Habib, P. and Vouille, G. (1966), "Sur la disparation de l'effet d'echelle aux hautes pressions", Compt. Rend. Hebd. des Seances de L'Acad. des Sci., Serie A, 262(12), 715. 
  20. Haeri, H., Sarfarazi, V. and Zhu, Z. (2018a), "PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test", Struct. Eng. Mech., 68(4), 497-505. https://doi.org/10.12989/sem.2018.68.4.497. 
  21. Haeri, H., Sarfarazi, V., Zhu, Z. and Lazemi, H.A. (2018b), "Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D", Struct. Eng. Mech., 67(5), 505-516. https://doi.org/10.12989/sem.2018.67.5.505. 
  22. Haeri, H., Sarfarazi, V., Zhu, Z., Hedayat, A. and Fatehi Marji, M. (2018c), "Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code", Struct. Eng. Mech., 66(4), 445-452. https://doi.org/10.12989/sem.2018.66.4.445. 
  23. Hazzard, J.F., Young, R.P. and Maxwell, S.C. (2000), "Micromechanical modeling of cracking and failure in brittle rocks", J. Geophys. Res., 105(7), 16683-16697. https://doi.org/10.1029/2000jb900085. 
  24. Hoek, E. and Brown, E.T. (1980), Underground Excavations in Rock, IMM, London,
  25. Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34, 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X. 
  26. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion", Proceedings of the NARMS-TAC 2002. Toronto, Canada: Mining Innovation and Technology. Toronto, Canada, July. 
  27. Hoek, E., Kaiser, P.K. and Bawden, W.F. (1995), Support of Underground Excavations in Hard Rock, Balkena, Rotterdam, The Netherlands. 
  28. Hunt, D.D. (1973), ''The influence of confining pressure on size effect'' Ph.D. Thesis. Massachusetts Institute of Technology, Cambridge, Massachusetts. 
  29. ISRM (2007), The Complete ISRM Suggested Methods for Rock Characterization Testing and Monitoring: 1974-2006, Ulusay R and Hudson J, Ankara, Turkey. 
  30. Itasca (2019), PFC 6.0 Documentation, Itasca Consulting Group Inc, Minneapolis, MN, USA. 
  31. Kim, J., Choi, J.W., Song, J.J. (2021), "Preliminary study on PFC3D micro-parameter calibration using optimization of an artificial neural network", Proceedings of the IOP Conference Series: Earth and Environmental Science, 833(1), art. no. 012096. https://doi.org/10.1088/1755-1315/833/1/012096. 
  32. Le Goc, R., Bouzeran, L., Darcel, C. and Mas-Ivars, D. (2015), "Using correlated random fields for modeling the spatial heterogeneity of rock", Proceedings of the ISRM Regional Symposium, Eurock 2015, Salzburg, Austria, October. 
  33. Li, K., Cheng, Y. and Fan, X. (2018), "Roles of model size and particle size distribution on macro-mechanical properties of Lac du Bonnet granite using flat-joint model", Comput. Geotech., 103, 43-60. https://doi.org/10.1016/j.compgeo.2018.07.007. 
  34. Martin, D., Lu, Y., Lan, H. and Christiansson, R. (2014), "Numerical approaches for estimating the effect of scale on rock mass strength", Proceedings of the 7th Nordic Grouting Symp., Gothenburg, Sweden, November. 
  35. Masoumi, H. (2013), "Investigation into the mechanical behavior of intact rock at different sizes", Ph.D. Thesis. University of New South Wales, Sydney, Australia. 
  36. Masoumi, H., Douglas, K.J., Russell, A.R., (2016), "A bounding surface plasticity model for intact rock exhibiting size-dependent behaviour". Rock Mech. Rock Eng., 49(1), 47-62. https://doi.org/10.1007/s00603-015-0744-8. 
  37. Masoumi, H., Saydam, S. and Hagan, P.C. (2016), "Incorporating scale effect into a multiaxial failure criterion for intact rock", Int. J. Rock. Mech. Min. Sci., 83, 49-56. https://doi.org/10.1016/j.ijrmms.2015.12.013. 
  38. Masoumi, H., Saydam, S. and Hagan, P.C. (2015), "Unified size-effect law for intact", Rock Int. J. Geomech., 16, 04015059. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000543. 
  39. Medhurst, T.P. and Brown, E.T. (1998), "A study of the mechanical behaviour of coal for pillar design", Int. J. Rock Mech. Min. Sci., 35, 1087-1105. https://doi.org/10.1016/S0148-9062(98)00168-5. 
  40. Miranda, T., Dias, D., Eclaircy-Caudron, S., Gomes Correia, A. and Costa, L. (2011), "Back analysis of geomechanical parameters by optimisation of a 3D model of an underground structure", Tunn. Undergr. Sp. Tech., 26, 659-673. https://doi.org/10.1016/j.tust.2011.05.010. 
  41. Miranda, T., Correia, A.G., Santos, M., Ribeiro de Sousa, L. and Cortez, P. (2010), "New models for strength and deformability parameter calculation in rock masses using data-mining techniques", Int. J. Geomech., 11, 44-58. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000071. 
  42. Obert, L. and Duvall, W.I. (1967), Rock mechanics and the design of structures in rock, Wiley, London, UK. 
  43. Peng, J., Wong, L.N.Y. and Teh, C.I. (2017), "Effects of grain size-to-particle size ratio on micro-cracking behavior using a bonded-particle grain-based model'', Int. J. Rock Mech. Min. Sci., 100, 207-217. https://doi.org/10.1016/j.ijrmms.2017.10.004. 
  44. Potyondy, D.O and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011. 
  45. Potyondy, D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions", Geosyst. Eng., 18(1), 1-28. https://doi.org/10.1080/12269328.2014.998346. 
  46. Potyondy, D.O. (2018), "A flat-jointed bonded-particle model for rock", Proceedings of the 52nd U.S. Rock Mechanics Geomechanics Symposium, American Rock Mechanics Association, Seattle, Washington, USA, June. 
  47. Pratt, H.R., Black, A.D., Brown, W.S. and Brace, W.F. (1972), "The effect of the specimen size on the mechanical properties of unjointed diorite", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 9, 513-529. https://doi.org/10.1016/0148-9062(72)90042-3. 
  48. Price, R.H. (1986), Effects of Sample Size on the Mechanical Behavior of Topopah Spring Tuff, Sandia National Laboratories, Albuquerque, NM, USA. 
  49. Quinones, J., Arzua, J., Alejano, L.R., Garcia-Bastante, F., MasIvars, D. and Walton, G. (2017), "Analysis of size effects on the geomechanical parameters of intact granite samples under unconfined conditions", Act. Geotech., 12(6), 1229-1242. https://doi.org/10.1007/s11440-017-0531-7. 
  50. Ranjbarnia, M., Rahimpour, N. and Oreste, P. (2020), "A new analytical-numerical solution to analyze a circular tunnel using 3D Hoek-Brown failure criterion", Geomech. Eng., 22(1), 11-23. https://doi.org/10.12989/gae.2020.22.1.011. 
  51. Schopfer, M., Abe, P.J., Childs, C. and Walsh, J.J. (2009), "The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insight from DEM modelling", Int. J. Rock Mech. Min. Sci., 46(2), 250-261. https://doi.org/10.1016/j.ijrmms.2008.03.009. 
  52. Tuncay, E. and Hasancebi, N. (2009), "The effect of length to diameter ratio of test specimens on the uniaxial compressive strength of rock", Bull. Eng. Geol. Environ., 68, 491-497. https://doi.org/10.1007/s10064-009-0227-9. 
  53. Walton, G. (2018), "Scale effects observed in compression testing of stanstead granite including post-peak strength and dilatancy", Geotech. Geol. Eng., 36(2), 1091-1111. https://doi.org/10.1007/s10706-017-0377-7. 
  54. Walton, G., Labrie, D. and Alejano, LR. (2019), "On the residual strength of rocks and rockmasses", Rock Mech. Rock Eng., 52, 4821-4833. https://doi.org/ 10.1007/s00603-019-01879-5. 
  55. Weibull, W. (1939), "A statistical theory of the strength of materials", Proceedings of the Royal Swedish Acad. of Eng. Science, Stockholm, Sweden. 
  56. Wu, S. and Xu, X. (2016), "A study of three intrinsic problems of the classic discrete element method using flat-joint model", J. Rock Mech. Rock Eng., 49, 1813-1830. https://doi.org/10.1007/s00603-015-0890-z. 
  57. Xu, Z., Li, T., Chen, G., Ma, C., Qiu, S. and Li, Z. (2018), "The grain-based model numerical simulation of unconfined compressive strength experiment under thermal-mechanical coupling effect", KSCE J. Civil Eng., 22, 2764-2775. https://doi.org/10.1007/s12205-017-1228-z. 
  58. Xu, Z.H., Wang, W.Y., Lin., P, Xiong, Y., Liu, Z.Y. and He, S.J. (2020), "A parameter calibration method for PFC simulation: Development and a case study of limestone", Geomech. Eng., 22(1), 97-108. https://doi.org/10.12989/gae.2020.22.1.097. 
  59. Xu, C., Liu, X., Wang, E. and Wang, S. (2021), "Calibration of the micro-parameters of rock specimens by using various machine learning algorithms", Int. J. Geomech., 21, 04021060. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001977. 
  60. Yang, S.Q., Tian, W.L., Jing, H.W., Huang, Y.H., Yang, X.X. and Meng, B. (2019), "Deformation and damage failure behavior of mudstone specimens under single-stage and multi-stage trialxial compression", Rock Mech. Rock Eng., 52(3), 673-689. https://doi.org/ 10.1007/s00603-018-1622-y. 
  61. Yoon, J. (2007), "Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation" Int. J. Rock Mech. & Min. Sci. 44(6), 871-889. https://doi.org/10.1016/j.ijrmms.2007.01.004. 
  62. Yoshinaka, R., Osada, M., Park, H., Sasaki, T. and Sasaki, K. (2008), "Practical determination of mechanical design parameters of intact rock considering scale effect", Eng. Geol., 96(3-4), 173-186. https://doi.org/10.1016/j.enggeo.2007.10.008. 
  63. Zhou, C., Xu, C., Karakus, M. and Shen, J. (2018), "A systematic approach to the calibration of micro-parameters for the flat-jointed bonded particle model". Geomech. Eng., 16(5), 471-482. https://doi.org/10.12989/gae.2018.16.5.471.