DOI QR코드

DOI QR Code

Modified p-y curves to characterize the lateral behavior of helical piles

  • Hyeong-Joo, Kim (Department of Civil Engineering, Kunsan National University) ;
  • James Vincent, Reyes (Department of Civil and Environmental Engineering, Kunsan National University) ;
  • Peter Rey, Dinoy (Department of Civil and Environmental Engineering, Kunsan National University) ;
  • Tae-Woong, Park (Renewable Energy Research Institute, Kunsan National University) ;
  • Hyeong-Soo, Kim (Department of Civil and Environmental Engineering, Kunsan National University) ;
  • Jun-Young, Kim (Department of Civil and Environmental Engineering, Kunsan National University)
  • 투고 : 2021.08.26
  • 심사 : 2022.11.24
  • 발행 : 2022.12.10

초록

This study introduces soil resistance multipliers at locations encompassed by the zone of influence of the helix plate to consider the added lateral resistance provided to the helical pile. The zone of influence of a helix plate is a function of its diameter and serves as a boundary condition for the modified soil resistance springs. The concept is based on implementing p-multipliers as a reduction factor for piles in group action. The application of modified p-y springs in the analysis of helical piles allows for better characterization and understanding of the lateral behavior of helical piles, which will help further the development of design methods. To execute the proposed method, a finite difference program, HPCap (Helical Pile Capacity), was developed by the authors using Matlab. The program computes the deflection, shear force, bending moment, and soil resistance of the helical pile and allows the user to freely input the value of the zone of influence and Ω (a coefficient that affects the value of the p-multiplier). Results from ten full-scale lateral load tests on helical piles embedded at depths of 3.0 m with varying shaft diameters, shaft thicknesses, and helix configurations were analyzed to determine the zone of influence and the magnitude of the p-multipliers. The analysis determined that the value of the p-multipliers is influenced by the ratio between the pile embedment length and the shaft diameter (Dp), the effective helix diameter (Dh-Dp), and the zone of influence. Furthermore, the zone of influence is recommended to be 1.75 times the helix diameter (Dh). Using the numerical analysis method presented in this study, the predicted deflections of the various helical pile cases showed good agreement with the observed field test results.

키워드

과제정보

The research presented by this paper was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF). Funded by the Ministry of Education (NRF2021R1A6A1A1A0304518511, NRF2020R1I1A3A04036506).

참고문헌

  1. ASTM D3966-07: Standard Test Methods for Deep Foundations Under Lateral Load. 
  2. Abdrabbo, F.M. and El Wakil, A.Z. (2016), "Laterally loaded helical piles in sand", Alexandria Eng. J., 55(4), 3239-3245. https://doi.org/10.1016/j.aej.2016.08.020. 
  3. Al-Baghdadi, T., Brown, M.J., Knappett, J.A. and Ishikura, R. (2015), "Modelling of laterally loaded screw piles with large helical plates in sand", Proceedings of the 3rd Int. Symp. On Frontiers in Offshore Geotechnics, Oslo, Norway. 10-12 June 2015. Taylor & Francis Group, London. 
  4. Al-Baghdadi, T., Brown, M.J., Knappett, J.A. and Humaish, A. (2017), "Effects of vertical loading in lateral screw pile performance", Proc. Inst. Of Civil Engineers: Geotech. Eng. J., 170, 259-272. http://dx.doi.org/10.1680/jgeen.16.00114. 
  5. Bouzid, D.A., Bhattacharya, S. and Dash, S.R. (2013), "Winkler springs (p-y curves) for pile design from stress-strain soils: FE assessment of scaling coefficients using the mobilized strength design concept", Geomech. Eng., 5(5), 379-399. https://doi.org/10.12989/gae.2013.5.5.379. 
  6. Brown, D.A., Morrison, C. and Reese, L.C. (1988), "Lateral load behavior of pile group in sand", J. Geotech. Eng., 114(11), 1261-1276. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:11(1261). 
  7. Cheng, Z. and Jeremic, B. (2009), "Numerical modeling and simulation of soil lateral spreading against piles", Proc., Int. Foundation Congress and Equipment Expo, Vol. 1, ASCE, Reston, VA. 
  8. Crowther, S.G. (1990), "Analysis of laterally loaded piles embedded in layered frozen soil", J. Geotech. Eng., 116(7), 1137 https://doi.org/10.1061/(ASCE)0733-9410(1990)116:7(1137). 
  9. Davidson, C., Brown, M.J., Cerfontaine, B., Al-Baghdadi, T., Knappett, J., Brennan, A. and Ball, J.D. (2022), "Physical modelling to demonstrate the feasibility of screw piles for offshore jacket-supported wind energy structures", Geotechnique, 72(2), 108-126. https://doi.org/10.1680/jgeot.18.P.311. 
  10. Dobry, R., Abdoun, T., O'Rourke, T.D. and Gosh, S.H. (2003), "Single piles in lateral spreads: Field bending moment evaluation", J. Geotech. Geoenviron. Eng., 129(10), 879-889. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:10(879). 
  11. Elkasabgy, M. and El Naggar, M.H. (2019), "Lateral performance and p-y curves for large-capacity helical piles installed in clayey glacial deposit", J. Geotech. Geoenviron. Eng., 145(10). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002063. 
  12. Fayyazi, M., Taiebat, M., Finn, W.D. and Ventura, C. (2012), "Evaluation of p-multiplier method for performance based design of pile groups", Proceeings of the 2nd International Conference on Performance-Based Design in Earthquake Geotechnical Engineering, Taormina, Italy, May. 
  13. Finn, W.D. and Thavaraj, T. (2001), "Deep foundations in liquefiable soils: case histories, centrifuge tests and method of analysis", Proceeings of the 4th Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, S. Prakash, ed., Univ. of Missouri, Rolla, MO, Paper No. SOAP-1. 
  14. Foriero, A., St-Laurent, N. and Ladanyi, B. (2005), "Laterally loaded pile study in permafrost of northern Quebec, Canada", J. Cold Reg. Eng., 19(3), 61. https://doi.org/10.1061/(ASCE)0887-381X(2005)19:3(61). 
  15. Gleser, S.M. (1953), "Lateral load tests on fixed-head and free-head piles", Special Technical Publication 154, 75-101, American Society for Testing Materials, Philadelphia, Pa. 
  16. Gonzales, L., Abdoun, T. and Doubry, R. (2005), "Effect of soil permeability on centrifuge modeling of pile response to lateral spreading", Proceeings of the Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, ASCE, Reston, VA, 50-60. 
  17. Haigh, S.K. (2002), "Effects of liquefaction on pile foundations in sloping ground", Ph.D. dissertation, Cambridge University, Cambridge, U.K. 
  18. Haigh, S.K. and Madabhushi, S.P.G. (2002), "Centrifuge modeling of lateral spreading past pile foundations", Proceeings of the Int. Conf. on Physical Modelling in Geotechnics, ISSMGE, London, U.K. 
  19. Hatanaka, M. and Uchida, A. (1996), "Empirical correlation between penetration resistance and internal friction angle of sandy soils", Soils Found., 36(4), 1-9. https://doi.org/10.3208/sandf.36.4_1. 
  20. He, L., Elgamal, A., Abdoun, T., Abe, A., Dobry, R., Hamada, M., Menses, J., Sato, M., Shantz, T. and Tokimatsu, K. (2009), "Liquefaction-induced lateral load on pile in a medium Dr sand layer", J. Earthq. Eng., 13(7), 916-938. https://doi.org/10.1080/13632460903038607. 
  21. Hetenyi, M. (1946), "Beams on elastic foundation", Scientific Series, vol. XVI. Ann Arbor: The University of Michigan Press, University of Michigan Studies. 
  22. Japan Road Association (2002), Specifications for highway bridges, Japan Road Association, Tokyo, Japan. 
  23. Kim, H.J., Kim, H.S., Park, T.W., Dinoy, P.R., Kim, J.Y. and Reyes, J.V. (2020), "Liquefaction Prediction of Saemangeum Silty Sand using LiqAS Program", ACEM20, Seoul, Korea. 
  24. Kim, H.J., Park, T.W., Dinoy, P.D. and Kim, H.S. (2021), "Performance and design of modified geotextile tubes during filling and consolidation", Geosynthetics Int., 28(2), 125-143. https://doi.org/10.1680/jgein.20.00035. 
  25. Kim, G., Kyung, D., Park, D. and Lee, J. (2015), "CPT-based p-y analysis for mono-piles in sands under static and cyclic loading conditions", Geomech. Eng., 9(3), 313-328. https://doi.org/10.12989/gae.2015.9.3.313. 
  26. Kulhawy, F.H. and Mayne, P.W. (1990), Manual on estimating soil properties for foundation design (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group. 
  27. Lam, I., Arduino, P. and Mackenzie-Helnwein, P. (2009), "OPENSEES soil-pile interaction study under lateral spread loading", Proceediings of the Int. Foundation Congress and Equipment Expo, Vol. 1, ASCE, Reston, VA, 206-213. 
  28. Lee, M.J., Bae, K.T., Lee, I.W. and Yoo, M.T. (2019), "Cyclic p-y curves of monopiles in dense dry sand using centrifuge model tests", MDPI: Appl. Sci., 9(8), 1641. https://doi.org/10.3390/app9081641. 
  29. Li, Q. and Yang, Z. (2017), "p-y approach for laterally loaded piles in frozen silt", J. Geotech. Geoenviron. Eng., 143(5). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001556 
  30. Li, X.S. and Dafalias, Y.F. (2000), "Dilatancy for cohesionless soils", Geotechnique, 50(4), 449-460. https://doi.org/10.1680/geot.2000.50.4.449. 
  31. Lim, H. and Jeong, S. (2018), "Simplified p-y curves under dynamic loading in dry sand", Soil Dyn. Earthq. Eng., 113, 101-111. https://doi.org/10.1016/j.soildyn. 2018.05.017. 
  32. LPile v (2019), Technical Manual, Ensoft Inc. 
  33. Lutenegger, A.J. (2011), "Historical development of iron screw-pile foundations: 1836-1900", Int. J. History Eng. Tech., 81(1), 108-128. https://doi.org/10.1179/175812109X12547332391989. 
  34. Matlock, H. (1970), "Correlations for design of laterally loaded piles in soft clay", Proceedings of the 2nd Offshore Technology Conference, Houston, Texas, 22-24 April. 
  35. Matlock, H. and Reese, L.C. (1960), "Generalized solutions for laterally loaded piles", J. Soil Mech. Found. Div. Am. Soc. Civil Engineers, 86(5), 63-91.  https://doi.org/10.1061/JSFEAQ.0000303
  36. Mittal, S., Ganjoo, B. and Shekhar, S. (2010), "Static equilibrium of screw anchor pile under lateral loads in sands", Geotech. Geol. Eng., 28(5), 717-725. https://doi.org/10.1007/s10706-010-9342-4 
  37. Prasad, Y.V.S. and Rao, S. (1996), "Lateral capacity of helical piles in clays", J. Geotech. Eng., 122(11), 938-941.  https://doi.org/10.1061/(ASCE)0733-9410(1996)122:11(938)
  38. Reese, L.C. and Matlock, H. (1956), "Non-dimensional solutions for laterally loaded piles with soil modulus assumed proportional to depth", Proceedings of the Eight-Texas Conference on Soil Mechanics and Foundation Engineering, Austin, Texas. 
  39. Reese, L.C., Cooley, L.A. and Radhakrishnan, N. (1984), "Laterally Loaded Piles and Computer Program COM624G", Technical Report K-84-2. 
  40. Reese, L.C., Cox, W.R. and Koop, F.D. (1974), "Analysis of laterally loaded piles in sand", Paper No. OTC 2312, Proceedings of the 7th Offshore Technology Conference, Houston, Texas. 
  41. Reese, L.C. (1997), "Analysis of laterally loaded piles in weak rock", J. Geotech. Geoenviron. Eng., 123(11), 1010. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:11(1010) 
  42. Sakr, M. (2009), "Lateral resistance of high capacity helical piles-case study", Almita Manufacturing Ltd., Ponoka, Alberta, Canada. 
  43. Sakr, M. (2018), "Performance of laterally loaded helical piles in clayey soils established from field experience", DFI J. Deep Found. Inst., 12(1), 1937-5247. https://doi.org/10.1080/19375247.2018.1430481. 
  44. Shelman, A., Tantalla, J., Sritharan, S., Nikolaou, S. and Lacy, H. (2014), "Characterization of seasonally frozen soils for seismic design of foundations", J. Geotech. Geoenviron. Eng., 140(7). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001065. 
  45. Spagnoli, G. and Gavin, K. (2015), "Helical piles as a novel foundation system for offshore piled facilities", SPE-177604-MS. Society of Petroleum Engineers. https://doi.org/10.2118/177604-MS 
  46. Vignesh, V. and Mayakrishnan, M. (2020), "Design parameters and behavior of helical piles in cohesive soils-A review", Arabian J. Geosci., 13(22). https://doi.org/10.1007/s12517-020-06165-1. 
  47. Welch, R.C. and Reese, L.C. (1972). "Laterally loaded behavior of drilled shafts", Research Report No. 89-10, conducted for Texas Highway Department and U.S. Department of Transportation, Federal Highway Administration Bureau of Public Roads, by Center for Highway Research, University of Texas at Austin, Austin, Texas. 
  48. Yang, Z., Elgamal, A. and Parra, E. (2003), "Computational model for cyclic mobility and associated shear deformation", J. Geotech. Geoenviron. Eng., 129(12), 1119-1127. https://doi.org/10.1061/ (ASCE)1090-0241(2003)129:12(1119). 
  49. Zhang, D. (1999), "Predicting capacity of helical screw piles in Alberta soils". M.Sc. thesis, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta. 
  50. Zhang, D.J.Y., Chalaturnyk, R., Robertson, P.K., Sego, D.C. and Cyre, G. (1998), "Screw anchor test program (Part I): instrumentation, site characterization and installation", Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB.