DOI QR코드

DOI QR Code

Buckling analysis of a sandwich plate with polymeric core integrated with piezo-electro-magnetic layers reinforced by graphene platelets

  • Pooya, Nikbakhsh (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mehdi, Mohammadimehr (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2021.09.12
  • Accepted : 2022.01.20
  • Published : 2022.12.25

Abstract

In the present work, we proposed an analytical study on buckling behavior of a sandwich plate with polymeric core integrated with piezo-electro-magnetic layers such as BaTiO3 and CoFe2O4 reinforced by graphene platelets (GPLs). The Halpin-Tsai micromechanics model is used to describe the properties of the polymeric core. The governing equations of equilibrium are obtained from first-order shear deformation theory (FSDT) and the Navier's method is employed to solve the equations. The results show the effect of different parameters such as thickness, length, weight fraction of GPLs, and also effect of electric and magnetic field on critical buckling load. The result of this study can be obtained in the aerospace industry and also in the design of sensors and actuators.

Keywords

Acknowledgement

The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this work. Also, they would like to thank the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work by Grant No. 891238/22.

References

  1. Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Contin., 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641.
  2. Arani, A.G., Maghamikia, S., Mohammadimehr, M. and Arefmanesh, A. (2011a), "Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods", J. Mech. Sci. Technol., 25(3), 809-820. https://doi.org/10.1007/s12206-011-0127-3.
  3. Arefi, M., Mohammad-Rezaei Bidgoli, E., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. B. Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092.
  4. Bahaadini, R. and Saidi, A.R. (2018), "Aeroelastic analysis of functionally graded rotating blades reinforced with graphene nanoplatelets in supersonic flow", Aerosp. Sci. Technol., 80, 381-391. https://doi.org/10.1016/j.ast.2018.06.035.
  5. Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2019), "Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: Magneto-electro-elastic vibration and buckling solution", J. Vib. Control, 25(23-24), 2875-2893. https://doi.org/10.1177/1077546319860314.
  6. Canbay, C.A., Karaduman, O., Ibrahim, P.A. and Ozkul, I. (2021), "Thermostructural shape memory effect observations of ductile Cu-Al-Mn smart alloy", Adv. Mater. Res., 10(1), 45-56. https://doi.org/10.12989/amr.2021.10.1.045.
  7. Chan, D.Q., Van Thanh, N., Khoa, N.D. and Duc, N.D. (2020), "Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments", Thin Wall. Struct., 154, 106837. https://doi.org/10.1016/j.tws.2020.106837.
  8. Cong, P.H. and Duc, N.D. (2016), "Vibration and nonlinear dynamic analysis of imperfect thin eccentrically stiffened functionally graded plates in thermal environments", VNU J. Math. Phys., 32(1), 1-19.
  9. Dat, N.D., Quan, T.Q., Mahesh, V. and Duc, N.D. (2020), "Analytical solutions for nonlinear magneto-electroelastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment", Int. J. Mech. Sci., 186, 105906. https://doi.org/10.1016/j.ijmecsci.2020.105906.
  10. Di Sciuva, M. and Sorrenti, M. (2019), "Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory", Compos. Struct., 227, 111324. https://doi.org/10.1016/j.compstruct.2019.111324.
  11. Vuong, P.M. and Duc, N.D. (2020), "Nonlinear static and dynamic stability of functionally graded toroidal shell segments under axial compression", Thin Wall. Struct., 155, 106973. https://doi.org/10.1016/j.tws.2020.106973.
  12. Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. A/Solid., 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004.
  13. Duc, N.D. (2016), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266.
  14. Duc, N.D., Quan, T.Q. and Cong, P.H. (2021), "Nonlinear vibration of auxetic plates and shells".
  15. Duc, N.D., Van Tung, H. (2010), "Nonlinear analysis of stability for functionally graded cylindrical panels under axial compression", Comput. Mater. Sci., 49(4), S313-S316. https://doi.org/10.1016/j.commatsci.2009.12.030.
  16. Duc, N.D., Thang, P.T., Dao, N.T. and Tac, H.V. (2015), "Nonlinear buckling of higher deformable S-FGM thick circular cylindrical shells with metal-ceramic-metal layers surrounded on elastic foundations in thermal environment", J. Compos. Struct., 121, 134-141. https://doi.org/10.1016/j.compstruct.2014.11.009.
  17. Duc, N.D., Tuan, N.D., Tran, P., Cong, P.H. and Nguyen, P.D. (2016), "Nonlinear stability of eccentrically stiffened S-FGM elliptical cylindrical shells in thermal environment", Thin Wall. Struct., 108, 280-290. https://doi.org/10.1016/j.tws.2016.08.025.
  18. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  19. Garcia-Macias, E., Rodriguez-Tembleque, L. and Saez, A. (2018), "Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates", Compos. Struct., 186, 123-138. https://doi.org/10.1016/j.compstruct.2017.11.076.
  20. Ghadiri, M. and S Hosseini, S.H. (2021), "Nonlinear forced vibration of graphene/piezoelectric sandwich nanoplates subjected to a mechanical shock", J. Sandw. Struct. Mater., 23(3), 956-987. https://doi.org/10.1177/1099636219849647.
  21. Ghorbanpourarani, A., Navi, B.R., Mohammadimehr, M. and Niknejad, S. (2019), "Pull-in instability of MSGT piezoelectric polymeric FG-SWCNTs reinforced nanocomposite considering surface stress effect", J. Solid Mech., 11(4), 759-777. https://doi.org/10.22034/jsm.2019.668611.
  22. Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of kirchhoff plate", Comput. Mater. Contin., 59(2), 433-456. https://doi.org/10.32604/cmc.2019.06660.
  23. Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063.
  24. Jia, J., Zhao, J., Xu, G., Di, J., Yong, Z., Tao, Y. and Li, Q. (2011), "A comparison of the mechanical properties of fibers spun from different carbon nanotubes", Carbon, 49(4), 1333-1339. https://doi.org/10.1016/j.carbon.2010.11.054.
  25. Karimiasl, M., Ebrahimi, F. and Mahesh, V. (2020), "On nonlinear vibration of sandwiched polymerCNT/GPL-fiber nanocomposite nanoshells", Thin Wall. Struct., 146, 106431. https://doi.org/10.1016/j.tws.2019.106431.
  26. Keleshteri, M.M., Asadi, H. and Wang, Q. (2017), "On the snap-through instability of post-buckled FGCNTRC rectangular plates with integrated piezoelectric layers", Comput. Meth. Appl. Mech. Eng., https://doi.org/10.1016/j.cma.2017.11.015.
  27. Khoa, N.D., Thiem, H.T. and Duc, N.D. (2019), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 26(3), 248-259. https://doi.org/10.1080/15376494.2017.1341583.
  28. Li, Z., Zheng, J. and Zhang, Z. (2019), "Mechanics of the confined functionally graded porous arch reinforced by graphene platelets", Eng. Struct., 201, 109817. https://doi.org/10.1016/j.engstruct.2019.109817.
  29. Mao, J.J. and Zhang, W. (2019), "Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces", Compos. Struct., 216, 392-405. https://doi.org/10.1016/j.compstruct.2019.02.095.
  30. Mohammadimehr, M. and Shahedi, S. (2016), "Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM", Steel Compos. Struct., 21(1), 1-36. https://doi.org/10.12989/scs.2016.21.1.001.
  31. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., 20(3), 513-544. https://doi.org/10.12989/scs.2016.20.3.513.
  32. Mohammadimehr, M., Shahedi, S. and Rousta Navi, B. (2017), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Pro. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 231(20), 3866-3885. https://doi.org/10.1177/0954406216653622.
  33. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  34. Namayandeh, M.J., Mohammadimehr, M., Mehrabi, M. and Sadeghzadeh-Attar, A. (2020), "Temperature and thermal stress distributions in a hollow circular cylinder composed of anisotropic and isotropic materials", Adv. Mater. Res., 9(1), 15-32.https://doi.org/10.12989/amr.2020.9.1.015.
  35. Pashmforoush, F. (2019), "Statistical analysis on free vibration behavior of functionally graded nanocomposite plates reinforced by graphene platelets", Compos. Struct., 213, 14-24. https://doi.org/10.1016/j.compstruct.2019.01.066.
  36. Quan, T.Q., Van Quyen, N. and Duc, N.D. (2021), "An analytical approach for nonlinear thermo-electroelastic forced vibration of piezoelectric penta-Graphene plates", Eur. J. Mech. A/Solid., 85, 104095. https://doi.org/10.1016/j.euromechsol.2020.104095.
  37. Reza, M. and Hossein, B. (2020), "Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams", J. Braz. Soc. Mech. Sci. Eng., 8, 1-14. https://doi.org/10.1007/s40430-019-2118-8.
  38. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.
  39. Selim, B.A., Liu, Z. and Liew, K.M. (2019), "Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers", Thin Wall. Struct., 145, 106372. https://doi.org/10.1016/j.tws.2019.106372.
  40. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  41. Song, M., Yang, J. and Kitipornchai, S. (2018), "Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. B. Eng., 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043.
  42. Song, M., Yang, J., Kitipornchai, S. and Zhu, W. (2017), "Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates", Int. J. Mech. Sci., 131, 345-355. https://doi.org/10.1016/j.ijmecsci.2017.07.017.
  43. Sun, C.H., Li, F., Cheng, H.M. and Lu, G.Q. (2005), "Axial Young's modulus prediction of single-walled carbon nanotube arrays with diameters from nanometer to meter scales", Appl. Phys. Lett., 87(19), 1-3. https://doi.org/10.1063/1.2119409.
  44. Thai, C.H., Ferreira, A.J.M., Phung-van, P., Mechanics, C., Duc, T., Chi, H. and Nam, V. (2019), "Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory", Compos. B. Eng., 169, 174-188. https://doi.org/10.1016/j.compositesb.2019.02.048.
  45. Thai, C.H., Ferreira, A.J.M., Tran, T.D. and Phung-van, P. (2019), "Free vibration , buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS", Compos. Struct., 220, 749-759. https://doi.org/10.1016/j.compstruct.2019.03.100.
  46. Taherifar, R., Mahmoudi, M., Nasr Esfahani, M.H., Ashrafi Khuzani, N., Nasr Esfahani, S. and Chinaei, F. (2019), "Buckling analysis of concrete plates reinforced by piezoelectric nanoparticles", Comput. Concrete, 23(4), 295-301. https://doi.org/10.12989/cac.2019.23.4.295.
  47. Wang, Y., Feng, C., Santiuste, C., Zhao, Z. and Yang, J. (2019), "Buckling and postbuckling of dielectric composite beam reinforced with graphene platelets (GPLs)", Aerosp. Sci. Technol., 91, 208-218. https://doi.org/10.1016/j.ast.2019.05.008.
  48. Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
  49. Yang, Z., Liu, A., Yang, J., Fu, J. and Yang, B. (2020), "Dynamic buckling of functionally graded graphene nanoplatelets reinforced composite shallow arches under a step central point load", J. Sound Vib., 465, 115019. https://doi.org/10.1016/j.jsv.2019.115019.
  50. Yazdani, R., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermomechanical loadings", Struct. Eng. Mech., 70(3), 351-365. https://doi.org/10.12989/sem.2019.70.3.351.
  51. Zhao, S., Yang, Z., Kitipornchai, S. and Yang, J. (2020), "Dynamic instability of functionally graded porous arches reinforced by graphene platelets", Thin Wall. Struct., 147, 106491. https://doi.org/10.1016/j.tws.2019.106491.
  52. Rahi, M.J., Rahmani Firoozjaee, A. and Dehestani, M. (2021), "Simplified numerical method for nonlocal static and dynamic analysis of a graphene nanoplate", Adv. Mater. Res., 10(1), 1-22. https://doi.org/10.12989/amr.2021.10.1.001.
  53. Rabia, B., Daouadji, T.H. and Abderezak, R. (2021), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: Study and analysis", Adv. Mater. Res., 9(4), 265-287. https://doi.org/10.12989/amr.2020.9.4.265.
  54. Rabczuk, T., Ren, H. and Zhuang, X. (2019), "A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem", Comput. Mater. Contin., 59(1), 345-359. https://doi.org/10.32604/cmc.2019.04567.
  55. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Methods Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.
  56. Thang, P.T., Duc, N.D. and Trung, N.T. (2017), "Thermomechanical buckling and post-buckling of cylindrical shell with functionally graded coatings and reinforced by stringers", Aerosp. Sci. Technol., 66, 392-401. https://doi.org/10.1016/j.ast.2017.03.023.
  57. Yang, Z., Feng, C., Yang, J., Wang, Y., Lv, J., Liu, A. and Fu, J. (2020), "Geometrically nonlinear buckling of graphene platelets reinforced dielectric composite (GPLRDC) arches with rotational end restraints", Aerosp. Sci. Technol., 107, 106326. https://doi.org/10.1016/j.ast.2020.106326.
  58. Yang, Z., Liu, A., Lai, S.K., Safaei, B., Lv, J., Huang, Y. and Fu, J. (2022), "Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches", Eng. Struct., 250, 113243. https://doi.org/10.1016/j.engstruct.2021.113243.
  59. Yang, Z., Wu, D., Yang, J., Lai, S.K., Lv, J., Liu, A. and Fu, J. (2021a), "Dynamic buckling of rotationally restrained FG porous arches reinforced with graphene nanoplatelets under a uniform step load", Thin Wall. Struct., 166, 108103. https://doi.org/10.1016/j.tws.2021.108103.
  60. Yang, Z., Lu, H., Sahmani, S. and Safaei, B. (2021b), "Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness", Arch. Civil Mech. Eng., 21, 114. https://doi.org/10.1007/s43452-021-00264-w.
  61. Tam, M., Yang, Z., Zhao, S., Zhang, H., Zhang, Y. and Yang, J. (2020), "Nonlinear bending of elastically restrained functionally graded graphene nanoplatelet reinforced beams with an open edge crack", Thin Wall. Struct., 156, 106972. https://doi.org/10.1016/j.tws.2020.106972.