DOI QR코드

DOI QR Code

GORENSTEIN SEQUENCES OF HIGH SOCLE DEGREES

  • Park, Jung Pil (Faculty of Liberal Education Seoul National University) ;
  • Shin, Yong-Su (Department of Mathematics Sungshin Women's University)
  • Received : 2020.12.24
  • Accepted : 2021.08.04
  • Published : 2022.01.01

Abstract

In [4], the authors showed that if an h-vector (h0, h1, …, he) with h1 = 4e - 4 and hi ≤ h1 is a Gorenstein sequence, then h1 = hi for every 1 ≤ i ≤ e - 1 and e ≥ 6. In this paper, we show that if an h-vector (h0, h1, …, he) with h1 = 4e - 4, h2 = 4e - 3, and hi ≤ h2 is a Gorenstein sequence, then h2 = hi for every 2 ≤ i ≤ e - 2 and e ≥ 7. We also propose an open question that if an h-vector (h0, h1, …, he) with h1 = 4e - 4, 4e - 3 < h2 ≤ (h1)(1)|+1+1, and h2 ≤ hi is a Gorenstein sequence, then h2 = hi for every 2 ≤ i ≤ e - 2 and e ≥ 6.

Keywords

Acknowledgement

This research was supported by a grant from Sungshin Women's University.

References

  1. J. Ahn, J. C. Migliore, and Y. S. Shin, Green's theorem and Gorenstein sequences, J. Pure Appl. Algebra 222 (2018), no. 2, 387-413. https://doi.org/10.1016/j.jpaa.2017.04.010
  2. J. Ahn and Y. S. Shin, Artinian level algebras of codimension 3, J. Pure Appl. Algebra 216 (2012), no. 1, 95-107. https://doi.org/10.1016/j.jpaa.2011.05.006
  3. J. Ahn and Y. S. Shin, On Gorenstein sequences of socle degrees 4 and 5, J. Pure Appl. Algebra 217 (2013), no. 5, 854-862. https://doi.org/10.1016/j.jpaa.2012.09.005
  4. J. Ahn and Y. S. Shin, Nonunimodal Gorenstein sequences of higher socle degrees, J. Algebra 477 (2017), 239-277. https://doi.org/10.1016/j.jalgebra.2017.01.008
  5. D. Bernstein and A. Iarrobino, A nonunimodal graded Gorenstein Artin algebra in codimension five, Comm. Algebra 20 (1992), no. 8, 2323-2336. https://doi.org/10.1080/00927879208824466
  6. A. M. Bigatti and A. V. Geramita, Level algebras, lex segments, and minimal Hilbert functions, Comm. Algebra 31 (2003), no. 3, 1427-1451. https://doi.org/10.1081/AGB-120017774
  7. M. Boij and D. Laksov, Nonunimodality of graded Gorenstein Artin algebras, Proc. Amer. Math. Soc. 120 (1994), no. 4, 1083-1092. https://doi.org/10.2307/2160222
  8. M. Boij and F. Zanello, Some algebraic consequences of Green's hyperplane restriction theorems, J. Pure Appl. Algebra 214 (2010), no. 7, 1263-1270. https://doi.org/10.1016/j.jpaa.2009.10.010
  9. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.
  10. D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), no. 3, 447-485. https://doi.org/10.2307/2373926
  11. Y. H. Cho and A. Iarrobino, Hilbert functions and level algebras, J. Algebra 241 (2001), no. 2, 745-758. https://doi.org/10.1006/jabr.2001.8787
  12. A. V. Geramita, H. J. Ko, and Y. S. Shin, The Hilbert function and the minimal free resolution of some Gorenstein ideals of codimension 4, Comm. Algebra 26 (1998), no. 12, 4285-4307. https://doi.org/10.1080/00927879808826411
  13. G. Gotzmann, Eine Bedingung fur die Flachheit und das Hilbertpolynom eines graduierten Ringes, Math. Z. 158 (1978), no. 1, 61-70. https://doi.org/10.1007/BF01214566
  14. M. Green, Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann, in Algebraic curves and projective geometry (Trento, 1988), 76-86, Lecture Notes in Math., 1389, Springer, Berlin, 1989. https://doi.org/10.1007/BFb0085925
  15. T. Harima, Some examples of unimodal Gorenstein sequences, J. Pure Appl. Algebra 103 (1995), no. 3, 313-324. https://doi.org/10.1016/0022-4049(95)00109-A
  16. T. Harima, Characterization of Hilbert functions of Gorenstein Artin algebras with the weak Stanley property, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3631-3638. https://doi.org/10.2307/2161887
  17. T. Harima, A note on Artinian Gorenstein algebras of codimension three, J. Pure Appl. Algebra 135 (1999), no. 1, 45-56. https://doi.org/10.1016/S0022-4049(97)00162-X
  18. A. Iarrobino, Compressed algebras: Artin algebras having given socle degrees and maximal length, Trans. Amer. Math. Soc. 285 (1984), no. 1, 337-378. https://doi.org/10.2307/1999485
  19. A. Iarrobino and V. Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci, Lecture Notes in Mathematics, 1721, Springer-Verlag, Berlin, 1999. https://doi.org/10.1007/BFb0093426
  20. A. Iarrobino and H. Srinivasan, Artinian Gorenstein algebras of embedding dimension four: components of PGor(H) for H = (1, 4, 7, ..., 1), J. Pure Appl. Algebra 201 (2005), no. 1-3, 62-96. https://doi.org/10.1016/j.jpaa.2004.12.015
  21. F. S. MacAulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. (2) 26 (1927), 531-555. https://doi.org/10.1112/plms/s2-26.1.531
  22. P. Maroscia, Some problems and results on finite sets of points in ℙn, Open Problems in Algebraic Geometry, VIII, Prof. conf. at Ravello (C. Cilberto, F. Ghione, and F. Orecchia, eds.), Lecture Notes in Math. #997, Springer-Verlag, Berlin and New York (1983), p. 290-314.
  23. J. Migliore, U. Nagel, and F. Zanello, On the degree two entry of a Gorenstein h-vector and a conjecture of Stanley, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2755-2762. https://doi.org/10.1090/S0002-9939-08-09456-2
  24. J. Migliore, U. Nagel, and F. Zanello, A characterization of Gorenstein Hilbert functions in codimension four with small initial degree, Math. Res. Lett. 15 (2008), no. 2, 331-349. https://doi.org/10.4310/MRL.2008.v15.n2.a11
  25. J. Migliore, U. Nagel, and F. Zanello, Bounds and asymptotic minimal growth for Gorenstein Hilbert functions, J. Algebra 321 (2009), no. 5, 1510-1521. https://doi.org/10.1016/j.jalgebra.2008.11.026
  26. J. Migliore and F. Zanello, Stanley's nonunimodal Gorenstein h-vector is optimal, Proc. Amer. Math. Soc. 145 (2017), no. 1, 1-9. https://doi.org/10.1090/proc/13381
  27. J. P. Park and Y. S. Shin, Gorenstein sequences of high socle degrees, https://drive.google.com/file/d/1X7ke9TFU4dDJz82ZS7Tkjk-8WYoqVOKd/view?usp=sharing
  28. S. Seo and H. Srinivasan, On unimodality of Hilbert functions of Gorenstein Artin algebras of embedding dimension four, Comm. Algebra 40 (2012), no. 8, 2893-2905. https://doi.org/10.1080/00927872.2011.587216
  29. R. P. Stanley, Combinatorics and commutative algebra, second edition, Progress in Mathematics, 41, Birkhauser Boston, Inc., Boston, MA, 1996.
  30. F. Zanello, Stanley's theorem on codimension 3 Gorenstein h-vectors, Proc. Amer. Math. Soc. 134 (2006), no. 1, 5-8. https://doi.org/10.1090/S0002-9939-05-08276-6